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ABOUT THE INSTITUTE FOR SERVICES TO EDUCATION

g

]

The Institute for Services to Education was incorporated as a_non-profit
rganization in 1965 and received a basic grant from the Carnegie Corporation
f New York.. The organization is founded on the principle that educatior
oday requires a fresh examination of what is worth teaching and how to teach
t. ISE undertakes a variety of educational tasks, working cooperative'y with
ther educational institutions, under grants from government agencies aha

rivate foundations.
ducational matﬁSH

tallation of succ

ISE is a catalyst for change.
als or techniques that are innovative; {t develops, in

1t does not just produce

ssful materials and techniques in the colleges.

ooperations with Feachérs and administrators, procedures for effective in-

ISE,is’péadéﬁzby Dr. Elias Blake, Jr., a former teacher and is stafféd
y college teachers with experience in working with disadvantaged youth and
lack youth in educational settings both in predominantly Black and predominant’ly

hite colleges and schools.

ISE's Board of Directors consists of persons in the higher education
ystem with histories of involvement in curriculum change. The Board members

re: ’
ernon’Alden °
erman Branson

fngman Brewster, Jr.
onald Brown 4

-

‘rthur-P. Davis
arl J. Dolce o

lexander Heard.
jvian Henderson
artin Jenkins -
amuel Nabrit

rthur Singer

itis Singletary

.. Vann Woodward .
>tephen Wright -’
Jerrold Zacharias

°

Chairman of the Board, The 3oston
Company, Boston, Massachusetts .

-President, Lincoln University

President, Yale University

‘The Center for Research on Learnirg

and Teaching, University of Michigan
Graduate Professor in Englisn,
Howard University

Dean,sSchool of Education, North
Carolina State University
Chancellor, Vanderbilt University

- President, Clark College

Director, Urban Affairs, ACE

Executive Director, Southern Fellowship

Fund, Atlanta, Georgia

Vice President, Sloan Foundatior,

New York, New York

President, University of Kentucky
Professor of History, Yale University
Vice President of the Board, CEFR
Professor of Physics, Massachusetts
Institute of Technology
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ABOUT THE THIRTEEN-COLLEGE CURRICULUM PROGRAM

-

From 1967 to the present, ISE has been working cooperatively with the
Thirteen-College Consortium in developing the Thirteen-College Curriculum
Program. The Thirtecen-College Curriculum Program is an educational caperiment
that includes developing new curricular materials for the entire freshmen yeear
of. college in the areas of English, mathematics, social scicence, physical
science, and biology and two sophomore year courses, humanities and philcsophy.
The program is designed to reduce the attrition rate of entering freshmen throughy
well thought-out, new curricular materials, new teaching styles, and new faculty
arrangements for instruction. In addition, the program seeks to alter the
educational pattern of the institutions involved by changing blocks of courses
rather than by developing single courses. In this sense, the Thirteen-Coilege
Curriculum Program is viewed not only as a curriculum program with a consistent
set of academic geals for the separate courses, but also as 2 vehicle to produce
new and pertinent educational changes within the consortium institutions. At~
ISE, the program is dirécted by Or. Freéer1ck S. Humphries, Vice-President.

The curricular developments for the spefific courses and evaluation of the progrm
are provided by the fo110w1ng persons:,

Course ~ " ISE STAFF
Erglish Miss Joan Murrell, Senicr Progrem
‘ Associate ,
Miss Carolyn Fitchett, Progrem
Associate

Mr. Sloan Williams, Program Associate
Miss Tiveeda Williams, Research

Assistant _
® ’ . Miss Ernestine Brown, Secrétary
Social Science ' Dr. George King, Senior Program
\ - , Associateg
Sy Dr. William J. Massie Jr., Program
d . ’ Associate

Mi'ss Nancy Seymour, Research Assistan
Miss Gloria Lowe, Secretary
Mathematics Or. Beauregard Stubblefield,
Senior Program Associate
Mr. Bernis Barnes, Program Associate
Dr. Phillip McNeil, Program Associate
_ Dr. Walter Talbot, Consultant
Mrs. Debrah Johnson, Secretary
<;¥i§¥sica] Science Or. Leroy Colquitt, Senior Program
- ) Associate
Dr. Roosevelt Calbert, Program Associat |,
Dr. Ralph il. Turner, Consultant
Mr, Armv Daniel. Consultant

| . . ) ) Miss LuCinda Johnson, Secretary
; Mrs. Cynthia Paige, Secretary

J
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Biology ‘ ) . - Dr. Charles Goolsby, Senior Program
' Associate

Mr, Dan Obasun, Program Associate
' Dr. Paul Brown, Consultant .
Humanities ‘ Mr. Clifford Johnson, Senior Program
K - . ' Associate :
Mr. Roger Dickerson, Program Associate
Mr. Keopapetse Kgositsile, Program
Associate
, Miss Marquerite Willett, Secretary
Phﬁiosdbhy » Dr. Conrad Snowden, Senior Program
° Associate ‘
Dr. Henry Olela, Program Associate
Miss Valerie Simms, Program Associate
Miss Judith Burke, Résearch Assistant
Miss Faith Halper, Secnetary
w. Dr. Thomas Parmeter, Senior Research
Associate )
Dr. Joseph Turner, Senior Research
Associate
‘Mr. John Faxio, Research Assistant
Mrs. Judith Rogers, Secretary

Evaluati©n4

In additién, Miss Patricia Parrish serves as general editor of the
. curriculum materials as well as an Administrative Assistant to the Director.
Mrs. Joan Cooke is Secretary to the Director. ‘ '

o

o

The curriculum staff is assisted in the generation of new edlcational
~ideas and teaching strategies by teachers in the participating.colleges and
outside consultants. Each of the curriculum areas has its own advisory committee,
with members drawn from distinguished scholars in the field but outside the
program. : . -

— The number of colleges panticipating® in the program has grown from the
original thirteen of 1967 to neneteen in 1970. The original thirteen ¢olleges
are:

Alabama A and M University ‘ "Huntsyille, Alakama

Bennett College : Greensboro, North Carolina

Bishop College Dallas, Texas

Clark College - \ Atlanta, Georgia

Florida A and M University - Tallahassee, Florida ‘ “
Jackson State College . Jackson, Mississippi

Lincoln University Lincoln University, Penansyivania
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Narfolk $tate Sqllege * Norfolk, Virginia - ,
North Cdrolina AN\and T State o . ' ‘
University ' Greensboro, North Carolina

~ L
Southern University - . Baton Rouge, Louisfana
Talladega College - : . N Talladega, Alabama
Tennessee State Unfversity : .Nashville, Tennessce
Vooﬁhees College g Denmark, South Carolina

A fourteenth college joined thus consortium in 1968, although it is
still cglled the Thirteen-College Consortium. The fourteenth member fis

Mary Holmes Junior College . West Point, Mississippi

In 197}, five more collieges Jjoined the effort although linking up’ as
a separate consortium. The members of the Five-College Consortium are:

Elizabeth City State University Elizabeth City, North Caroline
Langston University : Langston, Oklahoma
Southern University at ) : »
Shreveport Shreveport, Louisiana
Saint Augustine’s College Raleigh, North Carolina
Texas Southern University Houston, Texas

o
i .

The Thirteen-College Curriculum Program has been supported by grants
from:

The Office of Education, Title 111, Division of College Support
The Office of Education, Bureau of Research
The National Sc1ence Foundation, Division of the Undergraduate
Education
The ford Foundation
The Carnegie Corporation
The ESSO Foundation
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STAFF AND‘TEACHERgioF THE MATHEMATICS PROGRAM
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. Four Years In The Program One Year In The Program
Margaret Artis (NE) . Douglas Anderson (JA)
. ' Bernis Barnes (JA & ISE) William Barclay (ISE)
Laj Batra (CL) . Barbara Bardwell (BI)
Calvin Browne (TE & AL) Hollie Baker (NF)
# Reoben Drake (NC) ’ Joel Brainard (TA)
Carolyn Harris (CL) Willie Browm (JA)
Janie Jordan (NF) : Dongld Butler (LA)
Nancy Ledet (TE) Nancy Everett .(SS)
Johnsie Jo Posey {SB) ‘ Robert Ghent (TA)
Carl Whitman (FL) , - Henfilynn Gordom (TS)
- - Herbert Hamilton (TS)
) ’ Alfred Hawkins (BI)
\\ ‘ Robert Hollister (TA)
- Three Yearg, In The Program John James (BE) . \ s
. Ki W. Kim (LA) #
Jogeph Colen (JA) Henry Lewis (SA)
Charles liaynie €ISL) Addessa Lewis (SA)
‘Dorothy Hogan (BI) Mary Love £TE)
- 'Roger Ingraham (VO & BE) V. P. Manglick (EC) -
. " Carolyn C. Johnson (NF) - Robert McKean (LIL)
Harold King (BI) §. 8. Sachdev (EC)
- Jamesd” Kirkpatric (AL) o Eddie Paramorc (BE) :
some A Walter Talbot (ISE) -
§ - \> ‘ Melvin Turner (SS) . o
* w Elbert White (MH) ;
- Frank Wyse (TA)
Two Years In The Program
" Jack Alexander (ISE) Summer
"~ Ruth Carter (AL) : , T
Beatrice Clarke (FL) Fred Binford (TE)
John Ernst (MH) v Arthur Bragg (ISE)
Lee Evans (ISE) - Evelyn Edwards (ISE)
Prabhat Hazra (LI) , Boyd Jones (NF)
Kenneth Hoffman (TA) <Phillip McNeil (ISE)
Gwendolyn Humphrey (FL) \ V¥irginia Merrill (ISE) s
Reuben Kesler (VO) : ) “Harold Murray, Jr. (SAC) e
Viyian Kline (LI) Win iiyint (TE)
5 Hubgr Lamotte (SB) William Nicholson (ISE) . )
- Gerard Latortue (VO) . Mary Payton (SAC) \\'
Vernon Lowenbers (TA) Argelia Rodriguez (BI) '
Theodore Morgan (SB) " Jean Savary (BI)
A. K., Mukherjee (LI) Euclides Torress (BI)
Dorothea Smith (AL) b Ray Treadway (BE) N
Beauregard Stubblefield (ISE) \ John Wiley (ISE) -
'(AL)-Alabama A & M; (BE)-Bennett; (BI)-Bishop; {(CL)-Clark;
(EC)-Elizabeth City; (FL)-Florida A & M; (Jp)-Jackson State; )
(1.4)-Langston; (LI)-Lincoln; (MH)-Mary Holmes; (NF)-Norfolk State;
(NC)-N. Carcdina A & T; (SB)=gouthern U.; (SS)-Southern st Shreveport; .
(SA)=St. Augystine; (TA)-Talledega; (TE)-Tennessee; (TS)=-Texas Southern;. ;
T (VO)-Voorhees; (SAC)-Southern Association; (ISE)-Institute For Services to Ed..
Q , 2
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This unit ie & collection of macériaia and tcaching strategiles
which offer useful motivation for devéleﬂ;ng so?a impoextant Mathe-
matical ideas. The in;uitive approach is stressed ghrough!ug, The
proée&gres stinulate the imagination and help build self-confidence
by the "doing" of mathemécicb. In &eing thias approach, the teacher is
urged é@ restrain himself from telling the formulas premaﬁurelye
Informal preofs are generally aceeptable when they provide comvineing
arguncnts duti@g}c@qsa discussion, |

. This unit 1a‘§r1tten for the 1n$truct6r with é:ep by step
pf@eedurcs for doveloping many mathematical notions. The exercises
included im this unit will also appear in a separate publication,
"Excreises im Experimental Mathematies.” .

Special appreciation is due to Jack Alexander, Lee gvago
and Charlcs Haynic, members of the Curriculum Resources Staff and
to Roger Ingram,xxgnne:h Hoﬁfman, Jemes Kirkpatrick, William gichéison,

Newcomb Greenleéf. for their contributioms to this unit.

" Per the tedius task of pulling together the materials of the

contributors, speeinl credit is due Johnsie Jo Posey and Carl Whitman.
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INTUTITVE DEVELOPMENT OF AREA AND THE PYTHAGOREAM RELATION

Provide each student with a geo board-and a handful og\}uﬁber /
bands. A desirable board should have 1 inch spacing between pegs (small
o 3/4 mnailg) with a 13 = 13 array of thie pegs (169 pegs) at the vertices
of 1 inch oquares coverimg the face of the board. “Z\ (:yéﬂ
v E
What cangy&u 4o with this? . : : (

Allow at%:iyzé to explore the characteristics and potentials’

of the board. Movg around among students encouraging their exploration,‘
-7 agking about the interesting things they have found out. When the class
cshows seme restlessness with thic activity, suggest that they consider

gome things you've found of interest. .

What do we mean by the word "Area"?

Y | ;

!

You are likely to hear a confusion of formulas such as Area = (e)(w) (h)

or Area = 27TRH.

.After gome discussion of what ic me at by Area, it may be well

to move to estgblich as a definition that ’ will be ome unit

of arca and that the side is a unit, length (not 2 pegs length),

7 What, then, would this area be? [:j::5




(Don't mention arca of triangle formula, but clearly this arca is

half that of the uait cquare since two such triangleé give the unit

square.)
‘What 4s the area of this?
X
What would the area of this be? [:ii:::::=§
[ Frequently we have to be satlisfied with obtaining only a

gocd guess of the area of geometrical figures.
-

.

Make up any closed figure and determine ita area

using only square units

3

The ctudent schould be led te the following possible solutioms:
. Aoy

(a) A lower estimate of the area isc found by counting the

-/// ‘ maximum number of squares which lie entirely within the
- figure. (A side or a corner of a square might be part
of the boundary.)

- !

(b) An upper estimate of the area is found by adding to

the lower estimate the number of squares which meet the

. A
9 boundary. (Do not add those squares with omly a vertex

.

or a gide in common with the boundary.)

If some students find the area by using triangles and note

ERIC ' T
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that the area is the average of these tWo estimates, stregs that this

is ttrue only because of the limitation of using the geo board. to con-
’ ’ N Ve - : » L3 /

’. " struct figures. ‘' A diségssion of areaa‘of-aiﬁitrary‘g}ane figureé
. . L \ N

i

Ay

would involve limits.

Area Formula -3 T | C
' . / .
9 Form a 5 x 5 square by putting a large rubber band around such

a square,

How many squares of‘different arga“can;you f;nq

S in this square? L : h - . | J
C . ] / .. N é%

.

s . )
» Studentéfwill volunteer those with area 1, 4, 9, lﬁ.ﬁand 25.

L -

RO
»

- N . . .
I can see more. , A .

a t

Eventually-a student will come up with a aqﬁare with sides 1otated as
. . .

' .What is the area of this square?

1 [ 4 5 , &

Re:;

Although theré are many ways to determine this area, the folléwing
. &

procedure is convepient.
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Enciosg the figure of unknown area as\efficiently as possiblg
ingide a figure Sf known areas. As illuscfat d above, it is enclogﬁa

within a square°of area 4. (However we also khow the area of/zhe

. . .
, four triangles which have been added, 1. e.,each has area 1/2.) T ’
\ \ 74 . .
Therefor: the area of our given square ig 4 - & (1/2) = 2,
R FY e :
« b _
' i L
Can you find a square with the areas of N
Y - . )
v 37 37 and 2 units? . ‘ s
: 7

Investigation of the lengéh 6% the side for tﬁi; and.similar
pqu?:ee.leadé to ;he Pythagére&n Relation. This 1; a rewarding ex~
. - curgsion, but our 111ustrafive development will procéed first to in-

Qestigate"a nice inductively available pattern related to area.

-
1

" & \ N o
Now. uging_ghe wholq_ggo boargJ make up any L

aimple closed polygon* you like and detetmine

, its area. - C N

{ .. -
" When this has been explored at- some léngth, the’followihg exercise -

will'poin; out the importance of the number oﬁ,pegs on the boundar?

N N . \ . .
and the inside, , \ T i
: ) \ B
. ; . ,
\
Y

*To avoid the péssibility of a student forming a "figure eight"

A T

type of polygon, you need to introduce the concept of "simple

closed polygons." Otherwise the formula will mot work. ,

-




R

Construct a figure on the geo board having the following
N L

pr@peftlea and f11l in the blanks. On graph paper copy the figures

from the geo board. » S - ’ p .‘:
, . Ei@;

Pl

!
’ 3 0 m
¢ & o
— . $
V4
5 0 .
" 6 . 0
-3 1 o ’
' »
. [
) 6 1 —_ ‘
i 3
~
3 L] 2
/ T T
i 4 2
- 5 2 :
( 6 2 -

- & - A

V-

B = Nember of pégé on the boundary, .
I = Number of pegs iﬁ the interior

Q A = Area of the polygon 15
Q




Q

N | \ :
Although the students will begin to see a .pattern taking ahape,

thia will not be sufficient information for the students tc’genenpte the

formula for area by themselves.

"

To generate fun with tpia E;ocedurg. you shohldyn;oyse curiocusity
by“écur geemingly mysferioua ability to get'éhe anewet? iqgtant1§
while the students take so long. Recall, the pfeyigue exercise to rai%;J
force the imgortanéé of the number of péga, bptﬁ inside gnd.out. |
"

Let students develop their own ‘bookkeeping system for data

i .

relative to number of pegs -~ boundary and inside;the polygons. _ _

-~ :After conalderable clasé work (and as posaibl‘E homework) providé
students with worksheets listing cg.lumns of pegs inside, given polygoris
aas their boundarﬁ;a, énd their areas. The probiém for atudents i to
find a pattern to the data and forpulate it in a gimple expression, |

. (At least half the class i§; likely to get the formyla, eventually,

- I
they lose interest once it ia established‘.)

N

Secret Formula

The formula which studesdts wil discover and will enable the

teacher to verify polygon areas mentally 15./

-~

'Area = 1/2 (No. pegs on Boundary) + No. pegs inside - 1

¢ 6A%B‘;‘I—l‘

10



Pythagorean Theorem °

'gtress it ‘as 1.

A \ .
We may now go back to the question, "What 1is the \length of the

sidg of a square? If the are; is 1, the square 19 'of unit length but

If the area\ is 4 the length of eaeh side 18 )% or 2.

Y .

-

Now consider the length of any line which can be formed on the

geo board.

e Pl
N <

S
The length of this line can be determined by find:l.ng t:he area of the

square which has a side of this eame length.

- By previous experience the student will be able to determine that the

area is 20, and therefore the length of the line is ./20.

o

Proceed with this method several times,

1




o

. v
a

+To find the length of any given.non—verticaf, nqn—ho}izontal line

on the‘geo board, form a right triangle with rubber bands using the*

a

givenaline as the hypotenuse; then form 3 squares usihg‘each side of the
/ . ]

triangle as a oide of ome of the squares,

]

L - o
, What is the length of a side, S?
t
Students méy or may not volunte®r the Pythago;eén Relation.
Many do not remember and understand, 8o encourage .everyone to do the
b .
* geo board configgrations described belgw -- these are likely to be
vividly remembered. . l T . /.
".Put a band around any ripht triangle and then using 3 rubber
o bands form a square using each triangle side ag a site of
o a square.
What. special pattern do you notice abbut the areas of the
A sguares? | .
c2 = a2 + b2 in some form should be volunteered although the geometric
deseriptive is better for class discussion. ' - »
.
" 2 {
¢’ v
. c .
b2 b '
' a
2
a

Do you think this pattern will always hold?

Q | - <
I TR




§
.&‘

What does it mean?

9 ' i f

r ©
How counld you prove that it is always true?

/

Ansvers to this may lead to.some of the dissection proofs of the

Pythagorean, Theorem such as fo;‘any right triangle with sides a, b, and c. Q

Construct two gquares with sides a + b. Subtract equals from equals to

get 25 8% + b, v a ) ‘
o :
42
’ $
b2
b
(

Exercises
1

Prove or find a proof of the ?ythagorean Theorem. (A proof of, the

. - N
Generalized Bythagorean Theorem is given in this report.)

Using the geo board verify whether or not (a + b)2 =,a2 + b2 .,

1f not what might the right side be? N

\ o

The identity (a + b)% = a2 + 2ab + b

figuration at the right.

2

[

ig illustrated by the con-

a b

J v

)
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~ -

Demonsgtrate the identities with the geo board or uging peneil and paper:

~ (a) a(b + c) é_ab + ac - ,‘/
- ' g ﬁ'(b) (e + b):(c +d) o ac + be + ad + bd

(¢) (a = b)g ;‘%3 -~ 2ab + Ei? (5ee configu?ation below, )

1 i [}
(a,___vqy - c:ﬁo_.:,“A

i

6 -6 b ]
(d) Generalized Pythagorean Theorem for all triangles.

]

The following is the gtandard form.of the Cosine Law, but

it can be reduced to a more geometrié form in. the following manner:

. 4 .
c2 @ a.2 + ‘02 = 2ab+Cog C &

c2 o a2 + bg‘i 2ab %, where the + or - gign depends on
R = .

_ the size of the angle. -

. F
£

. Therefore 02 o a2 + b2 + 2a%, where x is tﬁg,length of the

s

projection of b on aj the + sign is used if . is obtuse,

the minus sign if C is acutes

The proof of these two statements depends uppn the teacher having
already taught the standard right angle form:

sza2+b2 . / .

Q | ‘f .
' 2U '\ 0



Case 1 T | ‘
LC is ovtuse. (See diagram on page 12.)
On the geo board construct an obtuse t.r;iangle: LC >90°.
Using the geo boa‘rd, construct the dlagram on page 12
Shov that — , ~
| - x)2 - y2
¢c® = a® + 2ax + (::2 + y2)
? = a® + 2ax 4 D2 (since 2 o i 4 yz)
: ) czmazi‘oz'-i-?.a:: )

You should follou the geometric solution,.rather than the a%g,ebra:‘f.c.

Cage II | ‘

£C is&acuté / | ‘
Uging the geo bo‘ard; construct AABC, vhere ZC is acut';e.
Using the geo board, construct the d.iagfams on pages 1%»_' and 1h.
Showvr that

/ & s (b = x)2 4+ y2 ‘ i

2. 2(b = x) = x()

2_2_ .2 e
y = 8 = am

(bmxzmb

Rewriting: c¢° & (b = x)° 4 y?

21

zczq,(b=x) +a% =

¢ = b+ 2 = 2xb (See Txercise ¢)
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<
.

Cone T ) =

/i l 1 '
/\\ | :
| |//N
ST - |
- // ‘\\
A AV
o ) ¢/¢¢f¢
L bid A
1o
' k\<\\
/ // ’/
//»////%n \
-~ Area = X(b, - x) Area = xb
Note: (b - x)2 = bZ - xXb - x(b - x) '
3

Other Uses Of The Geo Board

Other topics that may be developed usiug tne geo bLoards include:

Slope of a Line ) Number Rageg

Graphing Linear Inequalities Figurate Numbers N
}

Gaussian Integers " Computer Programming

14



ARITHICTIC NUILTLLS ' e

Originh}ly suggested in a short monocraph. by . H. Gundlach,
this tgbic provides challeénces in de;eloping arithmetic expressiong e
| folloring special rﬁles,and‘operations. &any students find the problems o
attractive. In pursuing solutioms, students revieu parts of arithmetic
that often are troublesome to non-science students and they are*intro=
duced %B'voth factorials and fractional exponents which may “e new to
“then. liany vafiatians can e introduced depending upon the.ingenuity

L

of the iné%ructor.

‘ v L. ¥
Creatins, \rithmetic Numerels for the Counting Numders 1 throuzh LO ,

-

It is possi.le to construct arithmetic expressions for each.of the
numuers 1 through 20 using exactly four of the mumerals L in each expre:.—
sion and using the four Hzsic arith&etic opefations, addition, subtraction,

'multiplication and division :rith tuo other arithmetic processes, grouping
(using pcrentheses) and place notztion (locating a decimal point in

o

combination with digit numerals).

~——

Can vou create on expressiornt for each of the numoers 1 -
= STty - ) -

tl rough 2U7 Try usingz pencil and neper and see how many

you can find.

Provide several examples and then circulate among the students

|

. |

ansvering individual questions. If questions relating to the order of , .
|

o 20




I3

{_ operations\foccurB have gtudents shov and aefend their interpretations
‘ -t the Jlackoard. Pregent tgz followving for student responses:
'(.1) o2 +3x6s=_30 or2+3x6c;ggﬁ_;_
So(9) k54342017 (orn53+425 9

o (e)y 3x5+6<+3 17 or3x5+6 *3a 7

o

=3 / » -
ostahlish the order of operations which recuires simplicakion

. of aritvhmetic expressions 4o proceed in the folloving order:

(1) Perform operations inside a parentheses

(2) nRaise to a pover

.

(3) 1wltiply or divide takin: operations in order N

Teft to right, ) N

(L) dd or sustract left to right

v v
A .. 4

Y. ~ . . .
ltany of the numers may e represented .y several arithmetic

numertls or expressions uithin the given conditions. Instructor

and clcss preferences can determine whether multiple expressions

are desired.

. "'hen many students heve many of the expressions, individuals
»
may e invited, in rotation, to irrite Leside & list of: arabic numerals
from 1 through 20 their -expression uvhich has not “een previously shoun.

Certain expreﬂpions uill prove difficult to obtein. Give no answers

even if students haven't found, for instance, an e:pression for 19,

Hut stimulate their curiosity and their pursuit of the question. I%

1 no one in the cluss h~s an cxpression for a numser or nmumers, remind

ERIC

) > ! —
20 ) e

}
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the class of thig at intervals of days‘of weeks.

Vhen the.class appears ready for a'new challenge--

o ‘ . :
You can continue to work:on the arithmetic numerals "

/
: N L
you haven't found yet. 1'd like to see wuat yuu have

when you get a difficult one, but leﬂbvchangg the

Q\ rules a little and work on scme mor¥e numbers.

S v

Let's eliminate the place notation process and add

8 and "one-half" powegggg.* We are allowed to

have 4zfor 16 in expreéslons ana it would pe considered

172

to use one "4". Aalso allowed are 4v;for 2 and (d x 4)

for 4 using one and two '"4's" respectively.

"Can you create arithuetic numerals for the numbers 21

through 30 using exactly four "4's", the four arithmetic

operations (+, -, x, +,), the process of grouping (par-

entheses) and second and "one~half" powering? -

)

* Note: The expression one-half power is used to introduce a fractional
exponent as a new concepi.. this provides the motivation for writing

' PR . . . .
(4» x 4)/)- = 4 rather than using the more traditional square root (and .

Vo x 4= 4). e -

-4

Q {




Exercises

=
3

Procedures similar to those used when developing the: arithmétic

numerals for 1 through 20 may be used here. Remember to withhold.ane-'

wers to stimulate curiosity and to encourage the pursuit of'pfoduc—

tive questicns. Then, when the class seems ready—-

[

Let's now have a new challéﬂge for creating arithmegin

numerals for the numbers 31 to 40. Let's festore plaée

" notaiions and add a new précess, "factorializing,' so that

we have available 4! (=4¢3-:2:1) which ﬁsea.gpe "4", Thus,

' .

the conditions are to create the numerals uaing/éxactlx

four "4's", the four operations (+, -, x, &) and the pro-

. Gesses grouping, place noting (locating 3 decimal point

among digits), raising to the second and hali;pawere,

and taking_;ﬁe factorial. /

[}

¢ r
{
(1) For homework find numerals for the numbexs that are not obtained
in class.

(2) For homework ,students might like the following:

]

N

Using'exactli four "4's", the four arithmetic operations
(+, -, x, &) and the two processes (parenthesis and dec-
imal point) create arithmetiqﬁnhmerala for each of the

fractions 1/2, 1/3, 1/4, 1/5, 1/6, 2/3, 4/5.

A
®

N




s

’ -
For clagswork or for homework the K following challenge' may be pre-

4

(3)
L

sented:

r

Given a eollection of six numerals as follows "1/2", "1/3","1/4",
"1)6",'"1/6ﬁ, '1/12" and the four arithmetic operafions?

?+, -, X, v) with the process of grouping, use any or

e

alllof the given numerals ;n'exp:essions equdl to thej

counting numbérs from 1 through 15. §xamp1e: (1/6 + (1/8))

N ‘
] , . .

= 1.
~ | . .
. d Phad

(4) Students may write a ghort monograph describing their findings

9

.11

using different digits (thrge "3's", or four "6's" or some-

thing) and by experimentation find the ‘conditions to impose N

3
0

¥ (in terms of the numerals, and the operations and processes)

N ¢ for creating the expressions.

=

Note: Illustrative solutions for the requested arithmetic numerals

are shown below:

(1) (4 +48) = (4 + 4) (6) 4 + (4 + 4) = 4
(D) Gx &) % G+ 4 (7) (46 2 4) ~ 4 )
(/ (3) G+a+4) 34 - b+ b bl -
(4) 4+ (6 -4) 24 ©(8) 4+h+b -4
(5) (bxb+4) =4 D bx (b+6)=4
(4 x .4 +.4) 2 4 (9) 4+ 4+ (42 4)

23




(10)

(11)

(1.2)‘

(13)

© (1)

(15)

(16)

an
(18)
(19)

(20)

- (21)

(22)
(23)

#

(b+4) +4-4
b= 4 ) 3 4
3 &) + (bb)
(z.z.ﬂ 4) #4.

% - 4) Sath
(4 + 4 x,4) <4
(bh+ b) + 4
6x8 = (b 58)
G4+ 6+4+4
bxb+b-4

bx b+ (b 4)

(45 .4) +4 + 4

(4 ": l‘ - ol‘) ':“04 .

(4 +454) x4

62 + 4+ (42 4)

A
bxb+6+ 40

(b +63%4)2 - 4%

)

(24)°

(25),
(26)

@n

(28)
(29)
(30)

(31)

(32)

¥(33)
(34)
(35)
(36)
(37)
(38)

(39) .

(40)

42 + 4

20

A
bxb4+4+4
W%

%

(4 + 4% 4)

e b+ b+

2

45 + b4 £ 4

244+ 4+ 4

(4% 4= 4)% + 4
4t - 42 4+ 4%
2

+42 424

434{6' ““fﬁ

4

4L + b + &

2

4° + 42 442

4
e+ b +4+ 2

G+ 652 - 424

4! - 4) x 4% 4
4+6H2 4424
bh - 4 - 4%

2 424

(4" x %4 T4

t2



Illustrative Solutions for Exercise 2

120 G+ (bxr) oy
® ) 1/3: bt (b+ 4+ 4)
< “ 1/@: bt (41 - (4 +4))
} m/} 1/5: 10 4% (bx 4&+2) ’ 47

1/6: 4 (4 + 4 - 4)
2/3: 43 (bt 4 -4)

4/5: bt (s b+ 4) C

Illustrative Solutions for Exercise 3

9 ' -
1. (1/6) + (1/6)
oo 2. (1/3{;; (1/6) . ,. . .
3.0 (3/4) & (1712) : \\\ ‘
4. (1/3) = (1/12) ) . “ \

5. (1/2 + 1/3) =+ (1/6)
5. (1/2) =+ (1/12)
ot 7. (/3 +1/4) = (1/12)
8. (1/3)-* (1/2) x (1/12)
9. (1/2) + ( (i/3) x (1/6) )
10, (1/2+1/3) ¢+ (/2% 1/3) & (1/12) |

11, (1/3 + 1/4 + 1/6 f‘1/6)'% (1/12)

12, ( (1/2) = (1/12) x (1/3) % (1/6)
. “




13, ( (1/2) + (1/3) + (1/4) + (1/12)
14, (1/6) ¢ ( (3/6) & (1/12) ) + (1/2) * (1/4)
15. (1/4) ¢ ( (1/6) = (1/6)) + (1/2) % (1/2)

v
.

\

k¢

Balance Conditions for an Equfil Arm Balance and Solutions to Linear Equations’

{ Materials: > '
A. For deﬁénétfation ) oo
1. Anequal arm balance - (low sensitivity from the physics \\,
lab or built for the occasion.)
f
@ 2. An agsortment with 6 each of 5 evegyday items such
as unused pencils, erasers, chalk sticks, washers, etc.
- . B. B. For s!&dents arranééa;iq\groupa .

1. Small colored chips or pebbles in 3 colors to provide
- approximatel? 20 of each‘color per group of students.
iy 5 2.} 1 centimeter cube - 2 or 3 handfuls within reach of

' ’ each student,

3. "Balgice Worksheets" - two per student marked off as

shown.

Left Pan ' Right Pan
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Thig unit uges a phygical demon;tracion to permit students to
observe and state rules for manipulating unknown weights on a balance
scale to determine the values ;f the unknowns. Students manipulate
color chips which represent different weights so as to ’m_aintain
slmulated balance conditions. Permitted chahgés allow‘determination
of the valueg of chips in & way; that parallels permitted changes to
given line%r equations that lead to their.roota. Interest cam be
killed by aaging students to work equations by chips. In stead
of ua&ng chips, students who need this unit most will attempt to
work equations with x's and y's using half remembe;éd rules from
\T\ .past exzperiencea, ’ ‘
- Student involvement comes from aftractive challenges to manipulate
colorful chips and to discover meaningful values and relationships.
To sustain interest the teacher should promote investigation of the
balance relationships for their own sake and avoid giving any hints
/ to the mathematical peyoff from the activity. A state?ent such as

~

the following may help: As we proceed, "If you know, what we are
b /

L

doing mathematically, come to me and vhisper your guess. If you want

to, I will give you an individual project to work on."

&

35
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v

*»Intfoducfion

Introduce the unit as a study of balance and balancing operations. )‘

. ngonstrgte to the class the ways that a balanced load may be
changed. S - Y

'éor exagple, acsume that one eraser balances four pencils. If you
start with an eraser balanciné four pencila,'adding an eraser to
cach side will maintain balancé and illugtrate addiag the same thing
to cach side, If you gtart with an eréser.balanciﬂg four pencils,
adding an eraser to the first side and four pencils to the other
sides gives balance with tw; erasers balancing eight pencild.. It
illﬁatrates adding equals to each aide.% Through similar demonstrations
the 'following general rules for baiahce operatiops may be observed:

(1) For BALANCE - (these require essentially that what you
do to one side you 0136 do to the other)

&
(1) '"Same Thing Operations"

¢

Adding the same thing to each side
Taking away thesszme thing from each side
Multiplying each side by the same factor

n - ™
Equally subdividing and balancing subunits from .

each gide
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(11) "Bzlonced Things Operations" ’
Adding balanced ébut different) things to one
’, and the other sides
Subtractinz balanced thimgs
‘Multiplying by equal things °

Equally subdividing - Ey‘equal thingé

,(iii{< "Interchange Operatiomns".
) » . ¥ i

fr o,
Mdve cach load to the
< A

'*@Fﬁﬁéite pan and @maintain
balance.
<; (2) TFor UNBALANCE - (these operations permit change to one side
alone and adding unbalanced things to the
sldes of the balance)
(1) "One Side Change"
Adding to one side
Subtracting to one side

Multigly_lgg to one side

Subgtitutiqua subdivision on one side only L
(i1) '"Unbalanced Things Operations" ‘
Adding unbalanced things on to one side and
other to other
; Subtracting
Multigiziné balanced sides by different factors

. Subdividing into a2 different number of parts

34

o
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,(11) | °

[

A. Pags out the balance workshcets and state: "Assume that
‘éach of the centimeter cubes represents a unit weight and
that colored chipo are some multiple of this. Let chips
of one color repregent the same multiple." Tben, ask,

. - "Can you repregent a gseries opralance combinations by
putting chips and ceqciméter éubes on each gide of the
balance as represented on the excrcice gheets?"

B. Circulate among the students{ encodrage them to make up
any combiﬁatioh that pleases them. Agk individuals
occasionally what meaning certain statements may have for
them, without comment (except perhaps, to stimulate

" their thinking a little.)

C. Next establish with the class that a "simple balance statemént"
is one uaing only one colored piece balancing a number of
unit cubes. BHave the students set up on their worksheets
gseveral eimple balances and then have them udertake
a process which may be called "complicating" or "disguising"
the simple statement. Complicating or disguiainé a simple
balance statement iz achieved by pérforming any of the
balance operétions on it. Allow an unlimitedéuse of pleces

of different colors and suggest that each student fill his

] . e worksheet with cimﬁlic tions as wild as he can think of,




. y n

and - developed from some simple balance gtatement. It is
/7 ' probable that-many students are not obscrving tﬁe‘conditions

P for "complicating” and so the instructor should eirculate _ °

=5

through the class, as what the original or root state~
ment was, and then checkag that the eomplicated statcment
ia conaia:emt with the uvriginal simple otatements, It 4is

golng to ba difficult mot to give oneself away by using the

) 1 .
word "cquation,” but this term should be kept sceret in (ﬁ

favor of Ehe "balanec" terminology. Allow time for

students to develop a facility, including a feeling of
fteedam, in setting up series of these eomplicatéd ‘balonce
combinations rooted in original simple statcments.

(1I1) "Sceing Through" Disguiscd Simple Statcments

In this section students will challenge other classimembers
to see through the disguises of simple balance stgtements which
they got by "eccomplicating" simple statements. ’
A. Have‘etudente use some one color chips with unit cubes ~
| to make a simple balance statement which éhey then "disguige"
by compliéatiﬁg it. Removeqthe original simple statement B .
freh the Qorksheet and then invite other me&bers of the clasgs

to exchange seats so that they can work back through the

{ disguises to the original simple statement, )

3 *
.

-~y
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\

When students see that this activity using one color is
rather trivial, suggest that they make two simple statements
each using a different coldr and then disguise this pair
of staéementa. Have gtudents record their root statements
on a e8lip of paper and then fill theilr worksheet with five
or go disgulsed statements. When two students each have
disguised seégt have them cxchange-geats and challenge eaeh
other to find the simple stateméngs.
NOTE: It will be well to check the complicated sets
at first, to insure that the intended simp}e
' statements are represented; However, some good
diaeﬁeeiona develop when students find that the ;
- statements are inconsistent. | _ .
This activity ueing two Zolora will probably hold the
students' interest for one or several class periods. Have
students use thei; second work sheaet to mit pieces to
represent new balance statements derived from the di;guiaed
statements. Afte;‘théy are doing this easily, encourage
students, probably one at a time as you circulate around
the class, to record on paper in some uanner the new
gtatements derived from the disguised set. Allow students

to devise their own recording system without imposing or

even suggesting techniques. When students have developed 4

30

S,
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facility in sceing through two color digguiscs and can

nove eesily from paper and gﬁFCil statement of balance

to the blocks and cubes statements, they are ready to

work with three colors.

C. Suggest to individual gtudents first, and then anncunce to

the class generally,
"When you have mastered building balance Btateménts
on the second worksheet related to two eolor disguised
statements on the first, and when you ecan record - e
these new derived gtatements using pencil and paper,

T move on to disguising three simple spatements." Ve
As before, have students £fill a worksheet with €ive combinations
before challenging a clasamate to break the disguise. Students
should record their simple statements on a slip of paper,
and, in many caseé. it is well to check disguised scis for
consistency with the root statements.

It may now be appropriate for the instructor to set up
one or several sets of disguised statements and .dnvite
students to find the root statements. Similarly, students

av challenge the instruector.

~

3




Slower students will continue working on two coler
utgteéenﬁg_while quicker students ma& be working on .
involved situations with statcments of three or more colors,
When the‘élaes has at least a minimal’ proficicncy with

o the cwé color sets, and secms ready, the imstructor

way wish to ageign sume of the axerciscs below for

classwork or homework before moving on to Scctiom ¥V,

Guided Insights.

\.
NOTE: These exerciscs arc illustrq;ive of many that

| vﬁimay be used for classwork orxhnmewgrk. They
progfeaa in difficulty from twe color simple
statemonts Wherein, for example, a green pilece
balances threc eubes, to statements qherein}g
green plece balances an empty right side (zé:o,

"cubes) and them to ata;ementelwherein a green
/ piece and two 5@298 balance an cmptf righr sidc
(so that the value of the green plece 1l)

negative tow cubes). A few three color disguised

f statements are included. The level of difficulty

| is ropresented by little éircleo next to the

mumber ,

| ERIC | S A
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_NOTE: 'Bumﬁisggisaisb!plebéléncestatetentsarez

\

AN

3 qubes o @ ‘7V :-2) cubes
& 7N DSCubes5 & 7N 4 cubes
«2)®“ 7‘:“‘4@@-3 (8) 7T 2 cubes
@ 7T 1 cube @ ANE cubes
 (3) ; 7N 4 cubes (9) @ 7N & omes
BTN e A 7N 3) cubes
@& 7N 1o Jﬁ(w) & 7N s oo
| AY 3 cubes A 7N 3 cubes
G @ 7N\ 4 cubes (1) A 7N 53 cue
‘ AT @ 7\ 2 cubes .
'“(6)-® /N 3 cies w O 7N 5 ot
@ N 0 cubes
(b4 7Y 0 cubes

7\_(-3)cmes
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IV. Guided_ Imnsights

| In.the previous gection we saw that a set of disguised
" statements could be ummasked to a set of simple statements. In K
this section we will show that one disguised statement leads

to many pairs of simple statements, Thus, for example, .
- Xk k k% & :

€ G C R 7V %% %% %=

may lead to (1) G A *xx* (2) ¢ K

* &
R '7?'* * R A %k % .
3) ¢ A\ = " etc.

Kk kR v
R N xx &=

To determine one simple stétement pair you must be given two

disguised statements that are essentially different (i.e.‘one

is not a multiple or a constant value differgnt from the other.) -
Divide the blackboard into three sections. At the top of ’ vo

each section show a sinéle simple-statemént. lIn the first, show

a statement with éne color, in the second with two colors and in

the thiré\qlgh“tggee colors. Then record in each section approxi-

mately four dia;uised statements derived from the simple statements

-

of that gection.

\

»

Keep only the disguised statements in each Bection, erasing

the origi%al simple statements.
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. )

Let us _assume that we do not know the eigple statements from

which thesé¢ disguised statements have come and that we know

éhlj the disguised balance statements.

&

Let us choose a disguised statementyiﬁ one color and work back

to its gimple statement.

»

——

Recordeon the blackboard statements voluntéered by students umntil
the simple statement is reconstructed.

th us choose a disguised statement in two colors and work back

1Y

through its disguige, simplifying it.

Again record sbatemeﬂts on the bldckboard. Students will find
that any simplified statement they obtain still has two colors
in it and many pagrs of simple statements (each in one color only)

satisfy it.

Let us choose a disguiged balance statement in three colors

and work back through its disguise to simplify it.

4o

e



o

A; before, any ai?plified statement will inelude three
colors, which may be satisfied by several sets of simple state=-
ments. Students may be guided to the insight that to determine
a single get of simple statements two disguised statements must
be given for two colors, three &ieguiaed statements for threc
célors, four disguised statements for four colors, ete.

Y

The examples following illustrate how ome such class discussion

night develop.
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(A) Under the one color heading:

Original & N\ .y

| * §
Disguising yielda (1) A * & 7‘. AR kK

() & e 7N BAA

v *
Simplifying ylelds (2) AN ** /N JAVAYAN
gomg‘ to 2" : x 7" ' & ‘
or (2")' & 7\- : " 2

(B) Under the two color heading

Original: & N ,:* "

@ /N ¢

)
Complicating yields (1) @ M n h A

) B-@*A 7\ ﬁ&

1
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ONAYAN AN

W BDRIDBBRA IS «r HA

Simplifying (3) vields

o B TN sobd
@ /N Do .

For which pairs of simple statements in two colers might be:

AN, BTN

* & % %

< * .
O / § X * A © 7N«
Or more conveniently in a talbe representing pairs of simpleww

statements for ,@and mwe have:

[ 4

Possible Pairs ‘

P /.Y v
Lol s 2
b 1 3
_c 13 6
d 3 1

e 9 -4

£ 1 0

43
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) . ™

3 a

Simplifying (4) yields no simplification, but the Bta{:emént

accords with the pairs of simple statements ineluded in.the table:

Pair & ﬁ@ }
‘ a 10 2
b 1# 3 1
c I 17 3
. d 31 — |
e 39 9.
3

Simplifying by :ﬁntetacting two disguised statements leads by

combining (3') and %) to: T

, x K

Y seepne® & /N DB s
| e
And to

* *®
)P0 D AT

And by subdividing that

2 AN

Now (5') means that

G @D VANEEE.




Combining (3') and (5") gives

SRCY R A DD **

*

SR SARE | &

The pair (5') and (6') consititue for original simple balance

statements for two colors.

(C) Under the three colcr(igauingv

»*

Original: Zg? 7“§ * %

/N
(::) ;f\: X%k K

Complicating yields:

(1) @Eﬂ@ 7‘ @*
(2) @(@) x 7\ ?]:: MO
(3) m& :: **7‘ EJ:*

41




Simplifying yields

(1) ] | ;f\: *
4
O AN
* *
{(3) @ * k Kk Xk 7? &
Simplifying by interacting 1' with 3' gives

(4")

B v v NG .

Adding (2') and (4") gives

(Sll) * %

ABE) v + 7N 4i wr @
So (5"')@& 7? :: * ol

*
And by subdividing (5"'") @ 7‘ *

*

Adding (5"'") interchanged to 2' we obtain

(6"')& ***VK *: :: &
(6"") 7" :: *

*

A

. 4V}
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3

We have thus worked through the diag%;?e to the original simple

statenent

[

(1) @ 77‘; * a' | -
(SV"'U) * N . ‘-_’
A@B ' ;7‘: ok ok
(6“0”) - . .
@!’ry j?ﬁ: * k&
' * %
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V. The Set-up Exposied

Previous work hao been discussed using omly balaneing vocabulary.

Hopefully the students are thinking in Balancing terms. Those

who are really thinking this way mey now be treated to ome of the

most pleasant experiences inf@btheuatics - the insight that

&
F i

two abstract gystems are in reality ome. The imstructor may

now guide student thinking to emable them to Ege that the system

<

of balance statementg and operatioms parallel form an

\hlgebraic systen imvolving linear equatioms,

A. What are the balance operations that we may perform om a

¥

balance statement that will maintain balance?

Record student responses on the blackboard, . o

Below is a set of statcments that illustrate those that might

be volunteered by students:

1)

2)
3)
4)
5)

When you put a plece om the left, put one on the

right side, also.

You can take the same plece from bothvsides.

You can gwitch the sides for the pleces on the balance.
You can add pleces together for two balamce combinations.

You can take 2 or any number of times the number of

- of pieces on the left side to balance the sgame

.number of times the pleces on the right side.



v, s B.  You now know a lot about equations. Each of these

! balance statements can be written as an equation.
. [

How would you write equations for the disguiged balghce
/

statements and their simplificatio I

on the blackboard in Section IV?

Record responses on the blackboard. These responses will -

probably include equnlity and the aritﬁmetic opératioﬁs although

. v a ) o ) R . o
triangles, circles and squares are likely to persist for place=-
holders. - Co - , 4v>

=9
2

The finalgmove to statements of a more pradi;ional algébraic -

form may come when letters are used for placeholders. . It may be

”

.

‘ 1nteresting to ask the followigg quesfions:

[P

How do you reﬁognize something in algebra when you. look

’ ‘at it? Have you Wicd any alpebra? ‘What did you do? |

The use of x's, y&s.a--' 8 for plécehpi%cté or variables is , -
oue of ‘the most visible 1 features of algebra and 1s likely ¥o be
‘mentinnnd. if aud w&en the use of letters as placeholdels is
.mentioned, the instructor day explain their convenience.' He may

then Bolicit algebraic statements that represent the disguf%ed Cop.

and the, simpiifying balancea an&’record'thékvolunteered algebraié

e statements on the blackboard. L _ ST '
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sl : :

Ty b h)
C. Since ﬁe/are finding algebraic terms to use in place of

_ the’ balancing terms, let us express the balance operations
) | ' hY

in algebraic terms.

%
/

"

‘The series of statements below may serve as an example of

IS

statementcs that méy'behvoluﬁteeréd and recorded on the blackboard.

. New and equivalent equations regsult from:

) ? ' 1) Adding the same quantity to both sideslof a given |
-‘ ~'equation. l\\\*,
, , : 2) Adding equal quantities to Eoth,aides.
. 3) Subtrécting‘the samé4or,equal quantities from both -
| : | sidesi | |
P -+ &) Multiplying both pa"rtﬁ-hy ‘n:ha same factor. -
| 5) Dividing be/l;\parts by the same divisor. ‘
’ f' ) Equationb are symmetric 80 that 1f A = B, then B = A.
D. You now have a knowledg;;of a mathemu;iual system in”
o ‘ which th"é elements are lfnear equations, - You may develop
your skill in working a set of complicated equations .
back to the simple root equations by practice._  Find |
‘Boge 1i;ear equgtions in an algebra book (gtarting with
) %&éfi%sffier oneslfiis;) and woék them out;yoﬁrself.
g Exerciges: For clz_.swork,or homewcrk students can worf sets of

“ o

‘ Jinnar"equatigys from standard books to find the root

. equétions.as the students desire.
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PERFECT NUMBERS

The factors of 6 are 1, 2, 3 and 6. Note:: 1 + 2% 3‘+ 6=2x 6.

The factors of 28 are 1, 2, 4, 7 4nd 28. Note: 1 + 2 + 4 ;%ﬂ + 28 = 2 x 28.

b

What/g;e”fhe ésctora of 4967 What is the sum of the factors of 4967

i

- T
\ «

\

< ‘\ INTRODUCTION

'

Sometimes it ie useful to have students generalize a well known

theorem in order!|for them to become more familier with the theorem it-

Fe]

self as well as with related problems. The student 1ig led to diecover math-

w# ematics in such‘a way that it becomes fun for him. We shall demonstrate thie

4 -

“approach by generalizing the concept of a perfect number to the concept

of a number which is said to be %- - perfect where a 1is a‘natural number.
Tﬁgﬂetudent is encouraged to try his hand at solving some famous unsolved

problems.

g (Part 1)

AN EXTENSION:OF THE IDEA OF PERFECT NUMBERS

e

The Pythagoreans originated‘the problem about perfect humbers. We

Al

. & ’ )
shall use%this idea in the extension given here.

N

The Sum of Successive Powers of 2. The student should be led to

prove the following well known theorem.




7

~

THEOREM 1l.1: For any integer p, the sum of the first p powers

o

of 2 {5 equal to 2P _ 1, i.e.,

04l uo? a2l L 4P ooy,

2

{a) Show that

\ 20 =211,

) . 20 4 21 = 2% -1,
20 4 21 4 52 .2 -1, \

20 4 21 4 22 4 23 Cw2h o g,

(b) Suppose that for some natural number k, it is true that

Vi - Q
20 #2223 4 L waklagk o,

)t
B ,,u?%iw,A o ot

] * Then multiply both sides of “the above .equation by 2 and add

- T

[~}
1 1 to both sides to determine the sum.

20 + 21 4 22 4 23 4 [+ KL 4 oK,

(c) What have you proved using Mathematicsl Induction?

0 4 21 422453

e

ﬂ " (d) 1Is this true: 2° + 2 + ...+ 2P o 0P _ g7

PERFECT NUMBERS. If we exclude 6 from the divisors of 6, then 6 is

the sum of its divisors, since 1 + 2 + 3 = 6.’ The same 1is true for the

~number 28. On account of this, they are considered to "perfect numbers."

(J

. . @
Euclid has given a formula for all the even perfect numbers. His formula

. Q\m . says that mel (2P - 1) is a perféﬁt number 1if p and (2P - 1) are both

T primes.. <

N

00
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Exerciges: P

(2) Try to find a natural number n which 15 not prime but for which

2% - 1 1g a prime number. What conclusion do you reach?

After a while the students should conjecture that 1f 2% - 1 is a priﬁ%

number, then n itself is a prime number.’

. Sy
(b) Show that, except for the number itgelf, the divigors of 2P
2Pl (2P - 1) are ﬁY’ ) i
- R oy
1. 2. 22. sy 2?'-1, Z(ZP hing 1). nnn.‘ 2p-2 (zp i 1). N
¢ (c) Show that the sum of these divisors is given by ’
1+2+2% ¢+ 2P @P oy @24+ 2P
(d) Expand the above sum to show that it is equal to
\\ Pl 2+ 244+ .00+ 2P 4+ 1),
(e) Use Theorem 1.1 to show that the above sum is equal to
. a
: 7

- 12°71 (2¢2P-1 - 1) + 1).

(f) Expand the above result to get

3
)
Lo el gp gy,

(g) Whagftheorem has just been proved about perfect numbers?

: | L ~ .

2




e
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e

THEOREMS ABOUT PERFECT NUMBERS. An elementary number theory

theorem gtatesg: /

Each gven -perfect number (Base Ten) ends in either a 6 or

an 8.

The student is hereby encouraged to prove the counterparts to this

L

theorem in other béaea. For excmple,

~
EHEOREM 1.2: All even perfect numbers (Base Nine), except the
perfect number 6, end in 1.
(a) Make a (Bage Nine) multiplication table.
= ‘ [
(b) Fill in the following table:
* i 3 5 7 10
* ’ .
i
) - 2 8\ 35
LY
2i-1 4
2i -1 7
A1l iy 3
B %
- TABLE 1 «~

— “c) . Prove the following theorem.
‘ E ~/

Hu
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THEOREM 1.3: Each odd power of 2 (Base Nine) ends in 2, 8 or 5.

(d) (d) Prove the following theoren. ‘ \

THEOREM 1.4: Each even power of 2 endg in 4, 7 or 1.

(e) Prove the followlng theorem.

THEOREM 1.5: Poxr any odd integer 1, 21 ~ 1 endsg in 1, 7 or 4.

(f) Prove the following theorem:

THEOREM 1.6: For any odd integer 1,

1. If 21 endg in 2, then 21=1 ondg in 1 and 2l .1 ends in 1.
' \

-

2. 1f 21 ends in 8, then Zigl ends in 4 and 21 - 1 ends in 7, and

3. 1f 2% ends in 5, then 2171 onds in 7 and 21 - 1 ends in 4.
(g) Prove the theorem. - ]
) -
THEOREM 1.7: For any odd integer i, 2i 1 (21 = 1) ends in 1.

(h) Prove the following corollary to theorem 1.7. ' For any

even perfect number n, except 6, n ends in 1 if n is given

in Base Nine.
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Exercigeg:
1. Show that im Base Eleven
(a) Each even perfect number ends in a 6, 1 or 4.
(b) 1If an even perfect number ends im 4, then it is of the form
P71 (P - 1)
where p i a prime of the form 10a + 9 (Base Ten). ﬁ )
Hint: Fill iﬁ\ghe following table. o
' ~
i 2 3| 5 7 9 10 - 12
2t 4 8 2d . )
2i-1 2. 4 15
Vol | 3 7 29 ’
A1 (o1 - py 6 26
2. Show that in Base Thirteen, except for the number 6, cach even
perfect number ends in a 1.-2. 3, or 8.
3. Show that in Base Fifteen in which the fifteen gymbols are 0, 1,
2, 3, 4, 5, 6,7, 8, 9, d, e, x, y, afid 2z, each even perfect
& number, except 6, ends either in 1 orpy.
4. Show that in Base Seyenteen, -each even perfect ﬂumﬁer except 6
ends in 1, 2, 4, or e. 9
5. What are the possible endings for even perfect numbefs if they are
written in Base Nineteen? - g -
6. Give endipgs for perfect numbers written in bases gix, eight and
twelve. |
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The Sum.of Successive Powers of 3. The student chould be led to

prove the following theorem.

THEOREM 1.8: For any integer p, the sum of the first p powers of 3

is equal to QE_%SL y Leee,

3°+31+33+33+...+3p“13p£1 ’
(a) Show that
40 o3l
{ 2
2
30 4+ 31 - 3% -1
% | 2
30 4 31 4 42 - P
, 2
30 4 3l 4 32 4 53 34‘2’1

(b) Suppose tﬁ@gr some natural number k, it is true that

< —= k.=
0 +3t 4324334, 4sEl, §=—2-=-1&.
Then multiply both sides of the above equation by 3 and add

1 to both gides to determine the sum

0

¢ . & 3" + 3l 4+ 3% 4 33

+ e+ 304k

(¢) What have youfproved using Mathematical Induction?

- P _
°+31+32+33+...+3p1-2=2-==l?

(d) 1Is this true: 3

I

HALF-PERFECT NUMBERS. We would 1like to imtroduce a problem about half-

perfect numbers. ' If we exclude 117 from the divisors of 117, then the sum

of its divisors 18 65 because 1 + 3 + 9 + 13 + 39 = 65,

/ 7 hY f\
9]
~

S
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Observe that

13 ig

65 is

117 io
}

5 is

A oimiliar

54

prime and divides both 65 and 117.
5% 13, and
9 » 13.

approximately half of 9. oy

relationship holds for the number 796797, i.e., if

~we exclude 796797 from the divigorg of 796797, then the cum of its

J

di&isors ig 398945.

Note that

©

14349+ 27+ 81+ 243 + 729 + (364) (1093) = 398945.

We find that

)

1093

398945

796797

365

ig prime and divides both 398945 and 796797. ”,“%\\;//
is8 365 ® 1093 and //// «
is 729 =% 1093. /

is approximately half of 729.

Thus, the numbers 117 -and 796797 both have the special property of each

having itself and sum of its factors as multiples of the same non-composite

number and having a ratio of approximately one-half. On this account, we

name them "half-perfect numbers”. Imn each case the non-composite number is

P .
given by the formula 2 +1) 1 for some prime p. We now give a formula

2 .4

for some half-perfect numbers. Our formula says: A number N is said to be

ta

half-perfect if there 1is a prime p such that

(a)

2+ 1P -1
2

—— 1is prime,

# _
(b) (2 + lip -1y @+ 1P 1. N, and

J

(c) the sum of the factors of N (excluding N itself) is

>~ b
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e+’ te -1 L 2+ DP -1
3 : 3

Ixercises:

If both p and 22_%xl are primes, then
p-1 , 3P -3
37 (=)

is o holf-perfect number.

(2) Show that, except for the number itgelf, the divisors of

-1 3P
3P 1( Fallod | ) are

' - P. P- e -
1. 3. 32. s .3p 1’((1_?1). 3(32 1). seey 3P 2(£=TL>

(b) Show that the sum of'these divisors is given by

[

) P _ ’
1+3+32 4 ... 430714 ci—=§=i ) (L4 3+ ...+ 3072,

(c) Change the above gum to show that it is equal to

, -
P -1 4 3%P-31 4 37 " -1

2 2 2

Uge Theorem 1.8.

RN

(d) Expand the above result to get

C+DPTr -1 . @+1P-1 _
. 3 2
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Exerfise: Show that the number 423,644,039,00) is a half-perfect number.

THEOREMS ABCUT HALF-PERFECT NUMBERS. Here are some other the@rems,__\\_g/.)

about half-perfect numbers which the teacher might take up in class.

o

THEOREM 1.9: The larger the value of p the closer to
one-half is the sum of the factors of a

half-perfect number N to the number N.

-

Exercise:
1. Show that no number can be both perfect and half-perfect.
2. - Show that the sum of the factors of a half-perfect number

(disregarding the number itself) 1is always greater than 1/2.

THEOREM 1.10: There exists infinitely many numbers that are

half-perfect.

/ﬁzé:j)THEOREM 1.11: There are mo even half-perfect numbers.

N

O
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Exercises: \\*
1. Pill in the blanks. ‘
If we exclude - from the divisors @f“423644039001 ’
then tﬁe sum of its divisors is . We observe
) 1+ + + .0. + | .
is p?ime and diviées both and 423644039001,
10 x 797161 and
is x 797161,
is approximately 4 of . .
Thus,clhg number’ - has the property of having itself

and the sum of its facters as multiples of the same
and having a ration of approximately "+ The number

423644039001 is one-half perfect since there exists the prime

such that

©

(a) is prime,

(b) 423644039001 + X » and

(¢) the sum of the factors of 423644039001 (excluding

423644039001) is » X .

AR

Q )
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Exercisces:

1. Show that in Base Ten

(a) Each half=pe§£ﬁi!‘éﬁmber ends in a 1 or a 7.

(b) If a half-perfect mumber ends 1m 1, then it is of the form

3P=1 (3P - 1) /2
where p 1o a prime of the form 4a + 3.

Hint: PFill in the following table.

1 .3 °5 7 9 11
3l "27 243
3i-1 9 81
3ty 13 121

3l @alonn
2. Show that in Base Nine each half-perfect numbet has an cdd

gl number of face-values, the first one being equally divided

1

between a atring of 4'c and a string of 0'c. 43 an example,
the smallest half-perfect number in Base Ninme 15 140. The
second smallegt half-perfect number in Base Nine is 1444000.

‘ 3. Suow that the Base Nine number 1444444000000 is ha1f=perfectf

| 4. 1Ig the Basgse Nine numbe;§1444444400000 half-perfect?

5. 1Is the Base Nine number 144444440000000 half-perfect?

é 6. Sh?w that corollaries .to the theorem of (2) above ;;g;—(

: (a) Every half-perfect number is a multiple of nine.

(b) Except the B@gllest half-perfect number, every halffperffcﬁ
number is é multiple of seven hundred twenty=bine. .

(c) Except for the two smallest half-perfect numbers, every

half-perfect number is a multiple of 318.

o e e e

bo
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‘ 3 . . v
The Sum of Sug%essive_Powers of 4. .The-étu%@nt ghould be led to
\ ’ ‘ s ' ; | . i
prove the following theorem. - - . , .

THEOREM 1.12: For any integer p,‘the sum of the first.p powers of \\
3 = > . : ——
» 4 18 equal to 4" -1 , 1.e., -
L ) - 3 e camm————— /
- g 3 ' P :
- b ral e ey +';.._+4P‘1.m4 ‘;1 | J
* ’ ‘ -‘I\(a) Show that ‘ '
\\ ) . B e dedbecel i . 1
v \\ 40 . . '4 ml \\
, 3
~ ; 40+ 41 b e ”42;1
P . ‘é,, L
s 3 B
. ‘ 4 +4;,4542 @4 -1 .
.3 7
: : ‘ .
AU A 4';1

(b) Suppose that for some natural number k, it is true that.

v k ,
+ ... 4454 ;1. ,

\\§&® T ‘Then multiply both sides of the above equation by 4 and add 1

0 1

L , -
§ . B A

to both gides to determine the sum , .
< . | _
e A SR S tiu“'l‘+ W

‘(e) What have yoqﬁprdvé& using Mathematical Induction?

4 -1

(@) Is this trudt 40+ 4l a2+ 434 . + 4P 4 .

. 3

ONE-THIRD-PERFECT NUMBERS. A number N is‘said to be éne~third-perfect

pro@ided that there is a prime p such that

Ed

L S &

. . ) . |
O ‘ ~ A ‘ ¢ ) 6\37 J |
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ONE-THIRD-PERFECT NUMBERS. A number N is said to be 'one=third-perfect

(S

provided that there is a prime p such that-

. \P _
(a) G+ 1; 1 s prime,

©

P . -
(b) N = @'*-% =1 v+ 1P, and

(c) The sum of the factors of N (excluding N itself) is

@ P - L GepPoa "
3 : 3
THEOREM 1.13: ',‘There exist primeé p and ﬁz;g_l° in which

v

- P
7 . «
is not ome-third-perfect.

4P -1

STEP 1. For the Prime p = 2, show that 3

is a prime.’

P _ g
(41

STEP 2. TFind the sum of the factors of 4p-l 3 .

STEP 3. §ho§ that the result found in STEP 2 does not satisfy

~(c) of the deftnition.

[

-]

THEOREM-1.14: ~ There are no numbers that are one-third-perfect.

IS

v &
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The Sum of Successive Powers of 5. The gstudent should be led to

S -~
prove the following theorem.
THEOREM 1.15: For any integer p, the sum of khe first
P _
p powers of 5 i3 equal to ———Z—l s, 1.e.,
- P _
5045l w52 4534 . 450 o 2——Z—l
STEP 1. Show that
. 210w tuat . L
50 L -1
' ' 4
S 2
50 + 51. o 3 1
. . 4
0 1 2 “53 o1
5" +5 +5 Y S T
0 1 2 3 ’ 54 -1
5" +5 +5 +5 = 3
\ o, STEP 2. Multiply both sides of the laat result by 5; add 1 to

both sides of this new equation to get your next

equation to go in STEP 1.

STEP 3. o Repeat STEP 2 until you are convinced that

0 2 -1

+53 4 ... +5P1 & 7

945l 45

{

ONE-QUARTER-PERFECT NUMBERS. We would like to introduce a problem
about quarter-perfect numbers. If we exclude 775 from the divisors of 775,

then the sum of ite divisors 15 1 +5 + 25 + 31 + 5 x 31.




T e e

Observe fhat‘

31‘ %Ejgpime apd divides both 217 and 775.
217 e 7 x 31 and
775 1s 25 x 31.
7 . 1is approximately 1/4 of 25. ; !

A similar relationship holds for the number 305171875, i.e.; if-
we exclude 305171875 from the divigors of 305171875, then the sum of
ite divisors 1s 76307617, ‘

Note that

1+5+ 25+ 125 + 625 + 3125 + 15625 + 3906 x 19531 = 76307617.

We find that

19531 " is prime and divides both 76307617 and 305171875.

?

76307617 is 3907 x 19531 and,
305171875 is 15625 x 19531.

76307617 is approximately 1/4 of 305171875.

) (
Thus, the numbers 775, and 305171875 both have the special property of

each having itself and the sum of its factors as multiples of the same
non-composite ﬁumber and having a ratio of approximately one-quarter. On
this account, we name them "l/4-perfect numbers". In each case the non-
composite number 1is given by the formula iﬁ;izllg for eoTe prime p. We
now give a formula for some l/4-perfect numbers. Our formula says: A’

number N is said to be 1l/4-perfect if there is a prime p such that

P _
(a) (4 + li L e prime,
. i p _ _ -
() —4* ?Z L 6+ 1Pl en, and

(c) the sum of the factors of N (excluding N itself) is

' Gr1Prea-1  +1nP-1
4 4
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Exercises
P

If both p and 2 3 1 are primes, then

-1 5P =
5P 1(5 - 1)

is a quarter-perfect number.

STEP 1. Show that, except for the number itself, the divisors

- P _ }
of5p1(5—41)are A

v

5P -1 sP o ‘p-2 5P — 1
i ) S, e, SPTT—).

1, 5, 5%, ..., P71, ¢

STEP 2. Show that the sum of these divisors is given by

. Jp- p— -
1+5+ 55+ ... P71, EhHa+s 4.+,

STEP 3. Change the above sum to show that?it is equal to

sP-1, sP-1 , Py

4 4 4

Use THEOREM 1.12.

STEP 4. Expand the above result to get

4+ 1P 4 4o 1) L G+ DP o

) 4 4
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1]

The sfudent ghould novw be able to score well on the following

exercices.

10.”

11.

1z.

13.

14.

Exercises:

Show thgp for any integer p, the ocum of the first p powers of 6
6f -1 )
5 . . - .
Give a formula for finding the oum of the first p powers of %. !

iz equal to

How would you define a number to be one-fifth perfect?

With the definition given in (3) above, can you find any numbers
that are one-~fifth perfect?

Define fumbers to be one-gixth~perfect in such a way that 6725201

is pne-sixth-perfect number. Show that every one-gixth-perfect
] -
number either ends in 1 or 3 (Base Ten).

$£?te and prove three theorems about quarter-perfect numbers. Do

not include any of those mentioned here.

P _ P _
6 -1 such that (6 1) is not
5 5

Show that there exigts primes p and
a one~fifth-perfect number.

Define the aet‘of one-tenth-perfect nﬁmbers and give an example.

Give a generalization 4in which you define for & natural number é, the
get of numbers which are l/a-perfect.

Show that in Base Ten each quarter-perfect number ends in 75.

State a corollary to the Theorem of (L0) above for Base Eight quarter-
perfect numbers.

State a corollary to the Theorem of (10) above for Base Four quarter-

perfect numbers.

, State a corollary for Base Five quarter-perfect numbers.
<

The Base Ten quarter—perfect number 775 and 305171875 are represented in
Base Nine by 1051 and 7072101, respectively. Make a prediction about quarter-

perfect numbers in Base Nine. Try to prove or disprove your conjecture.

N .
(i

El :I’v\

. ﬁ.{:f"—u
R
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(PART 2)

FURTHER GENERALIZATIONS WITH APPLICATIONS

We shall now generalize the concept of a perfect number to the .
concept of a number which is said to be-% - perfect where a ig a natural
number.

-

DEFINITION 2.1: A number N ic said to be % - perfecf i1f there 18 a

number p such, that for some number a,

P _
(a) both p and (s # 1? L are primes,

D a.
N = (a+ 1) -1

a x (a+ l)P-l, and

(b)

(c) the sum of the factors of N (excluding N itself)
EA? 4+ e-1° @+DnP-1
iss ; a pid .

a

-

.‘%};, AT

The following theorems follow immediately.

THEOREM 2.1: Any number Yhich 19-% - perfect 1s also perfect by
Euchlid's definition.
THEOREY 2.2: There are exactly three numbers less than the number
129140162 =x 43046721
which are half-perfect numbers.
THEOREM 2.3: There are exactly two numbers less than the number
12,207,031 x 9,765,625
which are one-fourth-perfect numbers.

THEOREM 2.4: There are no one-fifth-perfect numbers.



THEOREM 2.5: There 18 no number which is both a tenth-perfect
number and Smaller tpaé: 74 x 102,
THEOREM 2.6: (a) 1f a number N has 2 as a factor exactly once, and
| the sum of the factors of N 1s S, then g-doeq not
have 2 as a factor and the sum of the factors of g
is I—%—E

If a number
- (b) 1If a number N has 2 as a factor exactly twice, and

the gum of the factors of N 1s S, then %~doe5 not

havé 2 as a factor and the gum of the factors of

Nyg__ S
Z ST +2+ L

v

-

(c) If a numbef M has 2 ag a factor n times, and the
gsum of the factors of N ig S, then N/2% does not
have 2 as a(factor and the sum of the factors of

N/2" 1s given by the formula:
S S

1+2+4+ ... +2° gt -1
e e e e, - ’
- 1, %2 . %3 L -
M‘ If N = fl fz f3 fi

where the fi are distinct primes and the sum of the

-,

factors of N is S, then




s | ' bba

- e T ey
has no factor other than 1 and the sum of the factors

of N is given by

S
fe1+ 1_-1 er+ 1— ) fei+ 1_ 1
1 . 2 L] LN BN L] i
fl -1 fz -1 fi -1

or by
(fl - 1) (f2 - 1) - (fi - 1)
S x
e, + 1 e, +1 e, +1
1 2 - ee o i
(f1 1 (f2 - 1) (fi - 1)
THEOREM 2.8: . I1f N is a perféct number, i.e., the sum of the factors
of N is 2 * N, then
z e e e
- 2 2 g 1 -
fl (fl - 1) fz (f2 -1) fi (fi 1) o
1=2:
e + 1 e, +1 e + 1
fl -1 « i £ -1y fi -1

The condition is also sufficient.

THE SEARCH FOR PERFECT NUMBERS. If one wishes to search for perfect

numbers or numﬁfrs that are % ~ perfect, then TABLE II should be filled in and
#

primes should be gelected satisfying the conditions of THEOREM 2.8. 1In par-

-

ticular, if an odd perfect number is desired, then the following two theorems

"
are applicable.
' e + 1
THEOREM 2.9: If N is a perfect number, then (fn = 1) divides fn -1/.
THEOREM 2.10: If N is an‘ddd perfect number, then exactly one of the )
e + 1
numbers (fn -1/ (fn - 1)-is even (having only

one 2-factor).

.y

{
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fidden Combinatioms: A Thoughtful Game of Clues and Implications

>

. &

This game stimulates amalytical thinking, deductive thinkinog
and skillful interpretation of language statements., It is related
to David Page's "Hidden Numbors"* game and to geveral other

question games,

(A) Decks of twenty, small (approx. 2”-3 2") opaque cards
one deck for each four gtudents. The cards should be
numbered on one silde so0 that there are éour.carda for
cach of the numbers 1 through 5.

(B) A second deck (also'one deck per four students) of 12
cards (possibly 3" x 5" file cards) on each of whiech one
of the questions listed below is written.

List of questions to be typed on question eards. -
. l. Are there any numbers that are missing?
If so, how many are migsing? ' f

2, How many mumbers arc there which appear less frequently

" than the other numberg?
3. ’How many 5's do you see?
4. How many times does the most frequently appearing number

appear?

70




5o How many numbers appear more than two times?

6. How many numbers do you seé exactly once?

7. What 18 the sum of the numbers that you can gee?

8. H maﬁ§ triples ecan you sce?

9. H any numbers are multiples of twe?

10. Do y8u see more 4's and 5“; £t do you see more l's

or 2'g?

1l. Do you see more odd or more cvem mumbers?

12, Shuffle the cards and pass them on. b
Play

Allow students to arrange themselves in-groupa of four and then
pass out a number deck and a question deck to cach group. The
nunber deck 1s shuffled and each player draws three ecards, face
down, which he then (without seeing his mmbers) props up in front
of him for only the other three players to sce: When play begins
each person can see the mumber combinations of all the players
except his own. The player who begins draws the top card from
thg question deck, reads the question aloud for all players to
hear clearly and answers the question in accordance with i:g three
combinations which he can see, before replacing his question

dard to the bottom of the deck. Play, then moves elockwise to

the next player who draws a question card, reads, answers and

VAV

A




replaces it as before. Players who hear answers receive clues

to their number combinations. (For instance, suppose thg‘f@ur

players are A, B, C, and D. If player A acnswers that Fhe sum

of the numbers he can sce is 26, he gives a clue to plpyer D

who can see the cum of combimations in the B and C hands. Suppose

the sum of B's cards is 8 and of C's cards is 9, then their

sun together is 17 and D concludes that his sum is 26 = 17 = 9)

Subsequent answers pf@#ide additional clues and eventually a

player believes he knows the numbers in his set. When he believes

that he knows his cards, he says "I declare that my combination 18

..." (and states the numbers), If he is correct, he scores 6 -

points, but if he gives the wrong combination he must throw

in his hand and start anew By drawing threeknew number cards. A

player may declare his hand at any time. Him declaration does

not affect the‘play of the others. They continue teo deduce their

combinations independently of other declarations until they decide

individually to declare their combination. Play may continue until

time runs out or until scmeome reaches a predetermined total score.
After students have become familiar with the game and $re

ready to move on from gmall group play, the teacher may then

simulate play using a blackboard on which three hands are Bhowﬁ

for players A, B, and C. Each student in the class assumes the



&
13

role of D. The teacher, holding D's set hidden draws question
cards successively for the players. (That is for A, B, C and D).
In rotation the teacher assumeg the role of the saveral players
and answeraAthe question drawn for each particular player to
simulate the responses of thelplayefa in a real game. All the
students in class have the sane cluces and try to deduce D's eome

bimation with minimal clues.

-

Exexeiges

i) Below 1-\SHOWn a sample afi an exercise sheet that may be
devel@pe& for claesuort{yt bomework. ' The sheet repregents
a record of play among pl@yers A, B, C and D with C's
hand unknown to the reader. Answers of successive players
are given as they wéﬁzé in actual play. The question is
to find the implications of each answer and deduce C's
hidden combination.

Note: Similar exercise sheets may be easily be developed

to provide additional Exercises,

2) Create a similar game using a deck of letter cards instead of

number cards, by writing appropriate questions for the question

degk,




N .

Note: Several potentials seem to exist for modifying .the

game by using; .
a) n@gagiveﬁﬁumberg
b) fractioms; .
¢) multiples and/oxr divigors

or by allowing playerc im tuim to osk questions

of thelr owm chovsing.

’

-
g

71
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Two Students Walk: The Interpretation and Application of

Coordinate Graphs =

A primary objective of this study is to breakdown patterms
in which many students require artigical classroom cues to call
up and utilize their knowledge and skillc im coordinate graphimg

‘
and, thug, to establish moxe goeneral respomses. This &opic;’
in effect, asks studemts, "What arc the best ways to describe
motion?” Word, pictorial, graphical and algebrai@ideacriptions
are considered before ccordinate grophs emerge as comvenient,
information-packed dgscriptioms.
Materials >
1) 1/2 inch graph paper -- several Bheets per student.
2) (@ptionai? A yara (or meter) stick and stop Qatch to
measure data agcnrately;
3) (Optiomal) A cloth tape or knotted strimg about thirty
feet long with one foot markers.

(I) Two Students Walk: Different Speeds Alomg A Straight

Path Regular Type

While it is hoped that students will learn 2 good deal about
coerdinate graphing and its aepplications as a result of the

investigations in this unit, the topic is not introduced as

KA

8o
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graphing per se. Frequently outcomes are not predictaﬁle when
the instructor listens to students and allows them a role in
developing the topic. Although the instructor may indirectly
encourage a congideration of graphs, it ig probable that graphs

o

When the demonstrgtions are introduced avold aven using the terms

ay

will emerge as the major concept toward the end of this umit.

"graph” or "graphing”,

Regular Type Student Demonstration

" Before clasg gtarts the instructor should call two students,
let“us call them Reggie and Sam, aside and imstruct them to walk
at a émea@v rate oa a straight line toward a finigh line. They v
should start shguldefﬁtg shoulder at a ?marting line or poinmt,
which we will call "A" and proceed to the finishimg line or
point, called "B". Have the students count to themselves at a i
regular temgo of about one count per second with Reggie takingigne

tep per second and Sam taking one step every two seconds. (The
. students will benefit from 3 or 4 practice runs outside the classrocm.)

Then have them demongtrate before the class.

‘Let us see how accurately you can observe and describe the

activity of Reggie and Sam who are going to give a demon-

stration for you,
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v

Have the two sthdents dcmonstrate thelr "walk” amnd then =-=

"How many things did you observeil”
¥ i ; :

"Suppose you had a frieﬁd in San Francisco and you wanted

to deseribe Regeie and Sam's demongtration in a letter

to him. Draw a sketch or gome sort of diagram that would

show, as many of your obgervations as possible.”

"After you @gye dome this, give a gecond description using

word statements to list gs mamy observations as possible.”

Pass among the students rcising questions to stimulate thinking

and to demonstrate weaknesses without giving answers. Try to

e

resigt the tomptation to tell what heppended or how to fepfésent

it as this is likely to kill the challenge and student interest. 1€

questions arise from conflicting observations have Reggie and Sam
repeat thelr demonstratiom without verbalizing what they Bid.‘
Students, thus, muéu/obsetvg and resolve thelr differences
themselves.

As you find characteristically differeant Bketch;e, diagrams
and graphs ask-individuals to show them on the blackboard. Next,
have a student recorder list om the board, ome at a time, tﬁé
ve&bal'@b%ervacions, Again, 1f students disagree on_whgg\fhey
ngervad, haée Reggle and Sam repeat thelr demomstration. If
Btudenfa concinué to disagree ox 1f they wish greaterxr é¢catacy than

paeces and seeonds, ché~d19:an@ea may be measured with a yard stick

and timed‘with a stop watch.

XU
& .
\ " ?,
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Exauples of student responses to the above may imclude;

{A) TFor word statement obgervations:

(B)

(1)
(2)
(3)

(4)
(5)

For

(1)

(2)

(3

One student walked faster than the other.
The distances walked by both students were the same,

One ctudent took lomger tham the other to reach

the énd poilnt.

o

They walked in a straight line.

They started and ended at the same poimt.

illustrations or dizgraoms:

[

1

Steps
faster J
9l .
(%) Ao
slower ‘
1
a» Time
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Do the diagramg shown on the board accurately represent

the observations?” “Do the word statcments amd the diagrams

agree?” "Which is the beot diagram?
' >

Compare diagrams using such criteria ac the omnes below to cempare

and evaluate them.

)
(2)
(3)
(4)
(3)
(6)

-

Does

Boes

Does

Doeg

Does

Does

etc,

it ohow where each pergon was a givematmne?

it show where they otarted?

it cheow where they ended? <

it

show how far they traveled?

it show how lomg gyey-took?

it

S~

tell how fast they traveled?

Assuming that the distance from A to B is 30 feet and that

o~
Reggie paceg 3 feat prr gecopd with Sam's paces, 3 feet avery

2 seconds, one possible graph describing the motion is shown

/

below:
» 10 (10, }«0)
s Reggle —77
5
% (10, 5)
Sam
(0.0) ' X )

, ~\\///i@ Time (Secoéﬁs)

ey
i
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To insurc understatiding of the displacement-time graph questions

such as the following may be asked: Wherg is Reggie (or Sam) one

(or two) seconds after the start? What ig the velccity of Reggie

N
(or Sam) at the end of ome (or two) seconds? ctc.

9 Displacement )

Average velocity =

Time for that displacement

- &
Disploacement from A 18 used im prefere@Fe to distance from &

since the direction of diaplacemeﬂt will clarify the
description of actual gituatioms. For imstance 1f Reggie
otarted six fget further frcgithe finish line, B, tham
the origimal starting line, A, his origimal displacement
from "A" would be -6 feet, and after 2 seconds (at 3 feet

per cecond) he would have displacement from "A" = 0 B

and after a total traveling time of 12 gecinds his dis-
placement from A (in the B direction) would be +30 feest,

Displacement and Velccity are vector quancitie;\having both

magnitude and direc;lgn. Digtance and speed are gcalar quantities

with only magnitude. If a plame flies a distance of 500 miles
from Washington ome does mot know whether the plane is over land or

water, but if the plame has a displacement of 500 miles east from

Washington it is clearly over water. "9
; o




(

L.

(11); Two Students Walk: Traveling At the Same Speed Ome

s

Reverses His Directiom At the Midpoint
Coachvétg:a}udents and have them practice as beforc. This
time, h@weveﬁ,:h@ve both Reggie and Sam walk at the rate of ome
pace (3 ft.) per second. Have Reggie walk directly from A to B
covering the 30 &t; in iO geconds while Sam goes frgazgaFo the nidpgint,
M, (between A and B) where he reverses his direction without loosing
his pace so that he returns to A theNnge instant Reggie‘arriQQG,
at B. Sam ctavelslfrcm A toM (15 ft.) and M to A (lf’fg.) for a total
of 30 feet traveled in 10 seconds, also.
qSuggeac ﬁ%ﬁf the students 1list observations, sketeh
graphg, etc. to %esctibe what they have observed. Compare and
evaluate the different modes -- word statements, pictorial sketches

and graphs == of presenting‘the obgervations.

Exercises o

i 4

For classwork or homewprk the following questions may be )

agked along with similar\qgaétiOﬂa growing oﬁt of class discussilons.

Students may demonstrate many of the activities described.

-

\/@




(1)

(2)

L

OB
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Sketch a dioplacement-time graph showing Reggile
walking from atart,'A, to midpoint, M, at ome pace

per two scconds and from M to finich, B, at one pace

per gecond.

Sketch graphs showlng:
(a) Regglc and Sam otart from A at the same time.
Reggig walko twice as fast ag Saﬁ until he
~ reaches the midpoint wher he, Reggile, olows to
Sam's rate. Both continue traveling until each
iz at the finish, B.
(b) Reggile and Sam start together from A to travel
to destination B. Réggle walks twice as fast
as Sam, but when Reggle has traveled 3/5 distanee
to B he gﬁopa and waits for Sam to catch him,
Then, they contimue to finish &B) at Sam's rate,
Sketch a graph showing R Gtaéting at A and heading for
B at two paces per second while S starts at B heading
fo; A at one pace per second. If they walk head on
where do they meet?
Sketch two graphs with "interecting” breaking points
and different rates of travel. Im clags, challenge
nelghbors to describe in words what each graph

represents,




(5) Discuss whether or not a percon can move according to

the descriptions of the following graphs. Explain ydur

~

. angwer.

6

A

~

v

| AN

N
)

(6) WEﬂ%é an algebraic formula describing Reggie's motiom
when he travels. at ‘féem per gecond from A to B. What
ic Sam'c formula if he moves 3 feet every two seconds?

(7) Write an afgz;faic"formula {or f@rmulas)lEOE,Reggieﬁy
motion in Exercise (1) &bove. ‘

(8) Write algebraic formulas to descrlbe‘the‘éotion8>described

in Exercise (2) above.

a
-

© (9) What method of decription communicates characteristics

of students’® “movement most satisfactorily (a) word state-
o ‘ '

ments, (b) pictorial sketches, (c) graphs or (d) algebraic

formulas?

-

~

L4
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Onp Student Walks: Two Observers Are Located(OQe At the Starting
g

» , Line and the Other At the Finish Line

Have two students, let us call them Linda and Mary, act as
}\ .

observers at points A and B regpectively while a student, Reggile,
walks at one pace per Beconﬂ from A to B, Students may actually

a

demonstrate the activity called for, and the other class members
may, then, draw two graphs, one for Linda's observations and

- one for Mary's observations.

{

Linda and Mary are going to observe Reggfe as he walks from

v. A to B. On a sheet of paper tabulate observations of "dis-

placement from observer" and "time from start" first as

Linda (at A) and then second as Mary (at B) wouidxwecord

these observations. Include 4 or 5 tabulation pairs for

. é2> ¢ o

each ebserver,

Then sketch two graphs, one for Linda's observations

\

. and one for Marz'a.

Note: Ordered pairs associated with graph points and a clear

descrdption of the quantities in thebBe pairs provide a

key to undergténding the graphs. Thus, displacement 1is

4
not a sufficient description to use in the observations

above, we need to know, for example, whether we have

"displacement fram Linda" or "displacement from Mary" before
we can draw or interpret grnphs.“ ' ‘7{

If-B 18 taken to be in the poaicive‘direcqtion from A

the giris” graphe’might appear asjbelow:

e
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The 1n8tructor.mayfintroduce as many wariations as seeﬁs

+ . deairable in the light of class responses, Frequently the comﬁléké

itiea‘%hat are introduced by moving the location of the observer

are Avoided by using special cases or by,impoeing a rather étrict

set of unexpréesed conventions, . When instructors avoid coﬁplexities

1in these ways in oréer to "cover topics" in a cpurse, students,

accept graphs in the special way that they até;fgiven" to them
: B

aﬂq can give back é;cﬁanical azgwerg but fﬁe;black the depth .

of understanding that would make the graphs functional for them,
‘;F'is helpful in developing/ptﬁdent understanding to establish

<A

the followiﬁg or simflar seqﬁence-ef steps ip reigting graphs )

J
-

to phenomena and vice Qerea.
(a) A graph point + An ordered pair of numbers: (2, 6)
’ /
}(b) An ordered pair -+ Things{meaaured: (time from star;,k
' | displacement from Linda)
(;) Things measured + Event obzerved: (Reggie 18 6 féet‘

, 4
from Linda after 2 seconds from

~

start)

IV. One Student ﬁalke: ' Obgerver 20 Feet-From The Stﬁdent's_Path
o Th; instructor may have students perforﬁ demqnétrationa and/or

experimentations with the following situationéiaé seems best. Thia

?articular inveatié%?ion may chalieﬁge the more advanced and quicker

students in class who may study the- questions raised while other

5 ' studénts finjsh up earlier work.
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v A &
: F Larky ~
' ‘0 “\ )
O ZC>a£iiﬁ
‘k~L**\ :7/// | , Silvia
1S 12 ‘q b 3 o b
i Sec. “ 2aec.  Aaee. A%z, 5 sec. o
. '/\\ ) » ¢ . 14 1

Ruth, Silvia and Larry are located at vertexX peints of a 15,
20, 25 ri;ht triangle. -Ruth walks at a conatantdfgie of'B ft. pef
secodnd aiong the 15 foot side directly to%ard Si}via.who=1s located
at the vertex of the ilght angle. Thus, ab Ruth walk@:-she is at
12, 9, 6 ./Z feet from Silvia at the end of 1; 2, 3 ... seconds®

At the end of 5 seconds Ruth is alongside Silvia and the separation
distance is zero. . Larry-holds the knotted'tbpe.taut between him-
gself and Ruth. He records the diatances'ﬁuth ig from him at intervals .
of 1, 2, 3 ... 5 seconds (after Ruth ataf;ﬁ to walﬁ)}

°

Can you graph the ﬁistance, d, aganist the time, t?

What is the average veloclty? Can you measure Ad for

. Ad -
a given 4t and find the ratio At for several cases? Can

: Ad .
you sketch the graph of At against time?

100
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Exercises N .

>
//

.

1. (a) Could you change the situation to the following so

TS . , that the uniform motion (i.e. the change in distance .
° ] each second i3 the same as in each other second of
b ’ 0
" time.) is now with respect to Larry?

(b) Can youggraph (15 - K ) against time? What is the graph?
é : .

4 Z -
- (¢) Can you sketch 3% against time? What is the graph?

2. What4re the questions and what would you find with this

+

‘ ,altuation? v

-

\_hl“x\'

A

FeaS

3. Can you graph or draw the path of the moon as it Pioceéd;

o ' with the earth around the sun?

4

\)
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Arrays, Polynomialeé and Finite Differences .

~ " LN
0 . . , . ) ’ ! ’ ,

, The method of finding polynomials using finite differences in
table of date/ is quite powerful’'and often convenient to use. The
method may be.int};;oduced to students by "maneuveri:lg" on ayagl é / y
number lattices eor arrays and investigating regularities in thc ‘
arrayc. The i1lustrative deve}owent below shows one .possible way‘
of develdping the topic in a elassroom.

I»On the blackboard show the following array:

10 3 16 73 . 198. 415 748 1221 ' v

=7 13 57 125 217 333 473
20 46 . 68 92 116 140

.

24 24 24 24 24

. 7%
Can you figure out how this table was constructed? Can .

" . you extend the artay keeping the same pattern? Find and /
e N s

K
write the necegsary numbers to extend it to the right.
; ; : — .

X This is the easiest direction to extend the/array and leads to %
- 3

u significant interpretétions.
b
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Now, can you extend the array in the other direction such as

" to_the left or down? Try it and put in some va;\;eﬂlc Can

you: extend the array upwardb? Can you find the one hundredth

nunber to the right of 10 in the first line? .
’ \ L N ° Y
Extending to the right requires the gssumptiompthat the dext /)

{

nu‘tiber in the bottom row will be 24. Theh, moving up and to the

right we can £111 in 164, 6037,;:md 1858, Successive dmgpnafs to
the right could.be e}éded similz;zrly:, Moving to the left can be
done but;’becomes complicated because many of the operations for

~meving to the right are ioverted. Moving down contributes ’

e l:ittle}‘of value,, but should be agkea for clompletenqé\e and under-

standing. Moving up 1s not possible without having one value

o

o .
either given onﬁ agsumed on the higher J@evel.(‘l‘hia redates to the

b necessity of finding a constant ‘after integration in_calculus.) .

; ' These arrays are related to equations. For instance, 1if

N

Jw yve were given the equation y = .?c:r:2 + 5x + 2 we would have
) . the following array: |
] 2 20 . 24 46 70

8 ., 14 20 26 o =d o

E4 s N B .
and if we had the equstion y = xz + 2% =~ 5, we would have

. ~ . =Y
. "” » l ‘\‘
the following: U :

. * o

¢ N / y -
& g .

; 3 % \B

- N T
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=5 =2 3 10 19 30 43
3 5 7 9 11 13
2 2 2 "2 2 .
and 1if we had y = 22 + 7x +.15l7we would have:
13 22 35  s2 73 98
9 13 17 21 25
b 4 4 4

Can you predict the equation which has the following array?

1 9 27 55 93 141
8 18 28 38 48
10, 10 10 '{9

The function for the above table ig y = 5x2 + 3x + 1, It

. was generated by tablulating values of y for x = 0, 1, 2, 3, 4, ...

and taking/differenceé between terms in one line to obtain terms

in the next lower line. Thus, we have the table for y = 5x2 + 3x + k:

1

and thé/;irst row of the array

X 0o 1l 2 3 4 5 § 1s the aéquenck of y values., Other

'Yy 1 9 27 55 93 144 arrays may be developed for class

L 4

uge or homework as may seem best.
\

Write down to ex in to a friend in Tanzania the rules used

to find the formula above.

Circulate among the students and raise questions to point out’ errors.

lNow, can you dind an equation which would be similarly related

to the array gbe%\? . \

A .. B C D E




94

All the formulas or equations we have discussed go far had
an x squared term, Let us congider gome different situatdions.

'HhQE“!legwbe the formula for y in terms of x related to

the fofibwggg array? ;//
\CL&. zoedamn =
1 4 7 10 13
3 3 3 3

. And for this array?

- . .10 s 22 57 116
‘ 1 5 17 35 59
6 12 18 . 24
6 6 ¢

The first array is related to y = 3x + 1 and the second to y = X3 - 2x + 1.

]

The general analysis for formulating the value of a second degree
function in one variable i3 suggested below. Additional data relative
to first, 'third and fourth degree'functions is also provided.

A
Given y = ax2 + bx + ¢; thig implies the f£ollowing table:

1st dif. 4in val. 2nd differences
X ey of "Y" " (dif. of dif.)
EY
= o b c . '
: a+hb
1 a+b+e ) 2a ”
Ja+b : -
2 ‘ba + 2b + ¢ 2a
y 58 + b
3 Sa + 3b + 2
Ca b +¢c 7a + b a
.14 1a.+ 4b.+ ¢ )




The array derived from this would be:

’

(c) (atb+c) (4a+2bi+c) - (9a+3bic) (16a+4btc) 4
 (ath)  (3a+b) (Sa+b) \(7a+b)
(22) (2a) (2a)

Let us stop our analysis now, and consider the inductive situation
which we often face in practice. We will attempt to recomstruct
the originél equation. We note that,
1) We needed 2nd differences before obtaiging unchénging
difference terms. This implies a quadratic. |
2) The coefficient 6f the squared term 1s 1/2 the value of the
2nd difference (which, as indicated, 18 constant).
3) The constant in the quadratic expression is the first
term of the first liﬁe in the array. '

4) The coefficient -of the linear term in the expression is

obtained by subtracting the quadratic coefficient

(represented originally by "a") from the first term in
the second line (which our analysis showed to equal "a+b").

Example: Given the array discussed above, namely

The ohnervations above indicate that the related equation 1s

2
y={w/2)x + (P~-W x+ A,

A SN
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Similar analyses can be made based upon the following analyses.

l. y=ax+b

X

0

- AN
b

a ones d

a+bh
a

Za+hbd first
a

J3a+b

2. y-axz-!-bx-!-[c

ifference ’

degree

x ¥
o c )
a+b
1 a+b+c
. . 2a
2 ba+2b+c/ 3a+bhb
' 2a
3 9 + 3b + ~3a +b
. 2a
4 16a+4b+c /f7a+h
3. ywax3 +bx2+cx+d
.0 x ~y !// ‘
0 d ~la-!-b-!-c
1 a+b+c+d
i ’ 7l+3b+cn
2 Ba +4b+ 2c +4d =
19a + 5b + ¢
i | 272+ 9 + 3¢ +4d
J7a + b + ¢
4~ 64 + 16b + 4c + d
‘ 6la + 9 + ¢
5 125a + 25b + S5¢ + d e

two differences

‘second degree

6a + 2b

122 + 2
18a + 2b
24a + 2b

three differences

third degree

£
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Exerciseas: - . »

1., Find a formula that relates y to x in the £ollovin¢?tableni;

ayx iy . ®Wxly - e xly - o/
0o |2 ool ofo -
, 1 |a 142 R P b
' 2 |7 2 |8 —216
3 |10 3|18 3 |12
' FTRR A P! 420 .
2. Find a formula that relates y to x in the féi1o§¥;i tables: \
$ x4y b x.y ) x|y
olb ofo 0o
= 11+ 1|24 1 |a
2| 2+0b "2 {8+ 2 2 |2
3|3+b 3 |18+ 3 3|3 x
i ‘ 4la+b 4 |32+ 4 | 4 |
” 5 |50+ sb 5 | 5a

- ' _ '3. Graph the following points, (O, -45), (1,0), (2,21), (3,24), (4,15).

a! What gind of curve di these points fere?

Y Find a tovsula for the corve,

4. Une numter (n each 3f tnese Iwc sequences i¢ risprinted: Determine
which oﬁc and cxpqugf
a 1.2, 4, B, 15, 27, il, 64, 93
bi 1. 3, 310 3. 69, 133, 222, 351, 521, ¥39, 1031

&

f e




3.

6.
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.

' AN
A table of values showing the number of ter@b in a sum and
the value of the sum can be developed to find a formula for the

value of a sum,given the number of terms in the sum., Then

- a formula geneéralizing the pattern of the table can be

developed using the method of finite differences. Find the
sun of the first 93 odd counting numbers using this methiod,
Developing a table as suggested in (5), find a formula for

the sum of thé n odd counting numbers that follow the p=th

odd counting number,
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A Chain Loop Puzzle: An Analysis of the Number of Triangles

.. ~ of Given Perimeters That Can Be Formed
With Integral Sides (Integral Inequalities,
Modular Arithmetic and Polynomial Formulations)

Q [d g : / /

Preparation of a Demongtration Model -

Materials: A manilla file folder and some winged brass
, | paper fasteners.
. Cut from the folder{?bout 20 éf}ips of cardboard_& inches long

and one inch wide. Punch a hole n;ar each end of each strip, one~

half of an inch from the end, and centered with respect to the long ;,fh," e
, ’edgee. Using the winged fasteners, join ten or more strips end
to end to form a chain. Join the ends of the chain to make a

chain loop.

Statement of the Puzzle

A chain is made 'of .1inks of equal length. The ends of the
chain are joined to form a loop as in a bicycle chain. 'Thé loop
can be deformed into a triangle by using as vertices three
properly chosen points where links are joined and pulling taut
, |
betwéén each pair of these vertices the part of the chain that
joins them. How many‘Qifferen& triangles can be formed in this

way from a chain loop of given length? (This problem appeared

as elementary problem E 1825, page 1020, American Mathematical

Monthly, November, 1965.)

o
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- Procedure . . ) ,

Rlpd m puzzle 1o the ¢iess, and dmno?nu the formation of a.
frlangio fron the cl\oln loop. Then ralse ﬂl. quortlon. "Under what
Cdndl‘tlom should n conglder “wo tr.onglu formed ln this wvay to be
the aee?™ Tho discudsion of this question vill xake clear the

" !% clarifying the tormulation of the probun by doflnlng uhaf ls

jby "d1ttersot triangles.® Ask the students 1o formulate the detin

////;Tuo m-&;os will be consldered ditterent If they are not congruent.

/ ,/ Nﬁnpropouﬂn follovtngmfom "uovannmhfhouum |
) of thls problem ulﬂ\ow referring fo links and cheins at ell?"

| Dmlop through dlscussion this reformulation of the puzzie as a

puulo about nunborsx

For a flven &lfln "_"_'9"’ n, $ind the nunbor of m ruvent
triangles with lrrrml slides end garlm*ar e

| Then azk. "™hat Is ﬂ\o lovmf poalbto value O}T we moy uut
" [ After eliciting the tact thet n 2 3, ask the students to determine the
answer to the puzzie for the specific ceses whers oo®

ne34,3,6,70,9, 10, i1, 12, I3 and 14,

Ask for the results obteined by the students, and |ist them on the
board. Invite the students fo chellenge any answers thet they think
are wrong. The students will identify & triangle with perimster n by
glving the lengths of I?s thres sides. Record this Information as en
ordered triple. You may be given some ordered triples |ike 4,2,0), .
It they are not challengod by a student, esk that the triangle be made

o

9
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from a chaln loop of appropriate lengfﬁqfﬁihrough such trials and dis-

cussion, lead the class to recognize that the numbers must satisfy the

conditlon that the sum of two sldes of a triangle léigreafer than the !
fhqu slde.

i f ;;u are glven as separa*é solu?lons (4,2,1) and (4,1,2), these
will have to be challg?ged. Ask for a convenlent way of representing
the trlanglgs by ordered frlples that wlll make 4t easy to avoid dupli-
caflon. The discussion of this éuestOn should end with an agreemenf
that the fhéee members of an ordereq triple that represent a trlandle
will be lLsfed In descending order, Then ask, 1f (a,b,c) Is an ocgered
triple that rapresenfs'a triafngle whose perimeter Is n, where a, ba-and c
are positive Integers, what assertions méy we make about the nymbers
é{ b, and c? That Is, what conditlens must the numbers saflsfy?

Allow the students:-time to formulate the answers in thelr 5wn way .
first. |f necessary, hoWeQer, step In with these more speciflc ques-
tions: What Is the condition Iﬁposed by the fact that the perimeter of
the trlangle 1s n? How do we express the cohdlflon that Qe wrlfe the
members of the ordered triple ln descendlng order? What is the condition
Imposed by the fact fhaf the sum of two sldes of a triangle Is greater
than the third side? The final eutcome of this discussien will be the
listing of the three baglc condiftlons that must be satisflied byvan

ordéred triple (a,b,c) thet represents a triangle whose perimeter Is n:

I. a+b+c=n, (Perimeter condition)
. 3 .
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¢
2, a2b2c. (Descending order agréemenf‘made to elIminate dupl |-
catlon.) ~
3. a<b+c. (The sum of two’'sides of a triangle Is greater than
the third slde.) \

For any Integer n : 3, denofe‘by f{n) the number of non-congruenf
triangles with Integral sldes and perlmefer n. Use specific examp les
to be sure that the notation is undersfoo;. For example, n
f(3) =1, f(4) = 0, f(S)‘? I, etc.- You will now have recorded on the

- blackboard the triangles and the values of f(n) for values of n from.3

to 14, as follows:

3, T (,1,0. #(n) = I,

n = '

n =4, 1 none . - ft4) = 0.

m= 5, . (2,2,)). £(5) = |,

n= 6. (2,2,2). £(6) = 1.

hs 7. (3,3,1) (3,220, £(7) = 2,

n = 8, 7 (3,3,2). £(8) = I,
n=09, (4,4,1) (4,3,2). £(9) = 2, .
n= 10, (4,4,2) (4,3,3), S fU0) = 2,
n=1l. (5,5,1) (5,4,2) (5,3,3) (4,4,3). (1) = 4,

n= 12, (5,5,2) (5,4,3) (4,4,4), ' $(12) = 3,
n=13.  (6,6,1) (6,52) (6,4,3) (55,3 (54,4). f(13) = 5.

n= 14, ;6,6,2) (6,5,3) (6,4,4) (5,5,4), £(14) = 4, !

Our problem Is to find a way of computing f(n) for any glven value *

of n. Ve shall censider the problem solved 1f we dliscover a simple,

)

114 | )
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systematic and foolproof procedure for l1sting easlly all the ordered
fflbles that represent ;rlangles with Integral sldes and per]mefer n.
Then f(n) can bé faund by simply counting the triples. Once such a'
procedure |s known, a second; more.advanced type 6f solution can be
found in the form of a formula for f(n).
\ if an ordered triple of posltive Integers satlsfles theFthree
conditions llisted above, guggest that it be called an
acceptable ordered triple. Ask the class to think of a nafjral way lﬁ
which the job of listing all the acceptable ordered triples may be proken
down into a sequence ofg;gparafe steps. |f the Information Is not
supplied by the class,'sdggés¥ these steps: First, list all possible
values of a. Then, for each possible value of a, list all the possible
values of b.
To”defermlné possible values of a, for a given value of n, ask

the class to see what conditlons 2 and 3 tell about posslblb values of a.
| f. necessary, suggest, that a be adde& to both members of the Inequality
In conditien 3, Tﬁen we have

a b +c,

atacza+herc,
23 4 n,~
ac¢n,

< . <

Condition 2 makes two assertlons about a: -
- agbp,

aec,

110
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Adding these Inequalities, we get a‘ﬁ alhb+ec,

105

" Adding a to both members, we get a +a +a2a + b %c,

. - 3a

| gy

w

n,

{ a2n, orn%a.

0 - 3 . 3

Thus, we know that £a<n .

L1
3 2
This informatiog enables us to list ail possible values of a for a glven

~value of n, ) .

For example, 1f n = 15, 15 £ a<i5 .

Then the possible values of a are 5, 6, and 7.

1+n=16, 16€aci6.
K 2 .

Then the possible values of a are 6 and 7.

1tn=17, 17%a¢17.
3 2 . ////

Then the possible values of a are 6, 7, and 8.

Now we proceed to the second step of finding a way of listing all
the possibie values of b fer a given value of a, with n fixed. The
clue Is faund in condition 2. Ask the class to uncover it. The clue
Is that b cannot ?e gre;fer than a, and ¢ cannot be greater than b.
Moreover, oncé we have chosen a and b, we can calculate c by subtracting
a+'b fromn, In view ef condition .

For example, consider the case where n = 15; ;hdva is taken to be 7.

Then the highest possible value of b Is 7. The correspending value of

c Is I. Now take lower and fower values of b. Each time b is decreased




v : ' ' ]

by |, ¢ Is Increased by I. As coon as ¢ becomes greater than b; we have

an unacceptable triple, and the process stops. Thus, the acceptable v
- ; -

‘triples_for n = I5and a = 7 are : (1,7,1) (7,6,2) (1,5,3) (7,4,8.

The complete™ | 1st of acceptable triples for n = |15 Is as follows:
. .

4
(5,5,5) ' (6,6,3) (7,7,1)
(6,5,4) (7,6,2) '
(1,5,3) ,
N 5\‘ VR
. _ (7,4,8) "~

Consequently f(15) = 7,
Have the class evaluate f(n) for n = 16, f7,7l8, 19, 20, using
the procedure Just dlscove;ed above, " - ) ’
If the class wishes to go on to derive a formula for f(n), tell
tham that twelve separate cases have to be considered, and each leads
to a separate formula. The class may seek the fermula for each case,
one at a ttme, as follows: K .
Ciassity all posslbfe values of n by the remainder you get when
" you ;lvlde by 12. |If the remainder Is-r, then n = {2 m+ r, If this
notatlion Is not famillar to the sfudéﬁfs, develop it by asking the
sfudenfs how to check-a long dlvlslon;exémple. This ;uié?ioéxghould
eliclt the rule, ' ) -
dividend = (dlvisor x quotjent) + rema i nder .
Then, if m Is the quotient and r Is the remalnde( when you divide

nby 12, n=12m + r. Thus there are twelve separate classes of numbers

corresponding to the twelve possible values of r. The numbers In these
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classes have the following forms respectively: 'l2m, 12m + |, 1Z2m + 2,

-

1Zm + 3, 12m + 4, 12m +.5, 12m + 6, 12mn + 7, 120 + 8, 12n + 9, |2m + 0,

I2m + 11, ' ST ' s
Ask the é}ass ﬁo'IQenflfy the first seven values oé n'fonfwhlé;

n= Ifmg Determine th; corresponding values of f(n), Prepare a

table of vélués with two columns, one for m, andhfhe‘ofherlfor f(n). (

Ask the class to discover from the table a formula that expresses f(i)

In ferms\of m. Next ask the class to lde;flfy the first seven Qalues
of n for which n = 12m + I, Defermlné the corresponding Qalueg of f(n).
1 Again, prepare a table of values with two columns, on; for m, and the
ofher far f(n). Ask the class to discover from the table a formula
that expresses f(n) In terms of m. Repeat thls procedure with eéch o{ ‘
the other classes of possible values of n,
The twelve formulas are given below. « After all +ge
formulas have been found, ask the class to estimate menTaily the. value
of.f(n) for large values of ﬁ. Is there a single formula that gives

an approximate value of f(n) for large values of m? (The single

formula Is £(n) = 3m2.)
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The twelve formulas for f(n) are glven In the following table:

n f(n)
| 2m ~ 3m2 P
. 12m + | 32 + 2m
12m + 2 3m + m .
12m + 3 3m + 3m + |
7 12m + 4 Il + 2m
120 + 5 32 4+ 4m + 1
I12m + 6 3mZ + 3m + |
12m + 7 e + Sm + 2
12m + 8 3mZ + 4m + |
) I2m + @ 3(m + 1)2
) » 2m + 10 3mZ + 5m + 2
( 12m + 1 302+ Im + 4
\.\ l\
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3

Over the Edge:‘ A Physical Problem That Introduces Converging

and Diverging Series

N
This topic presents a mosgt interesting physical problem that

1s an applicagion of the notion of sequences and series that

could lead to converging and diverging series. The pregsentation

below illustrates a possible devélopment of the topic with a
class and may be helpful although it should be quified and
changed~yo suit the instructor's and student's prefercnces.

. Materials: 8 to 10 uniform slats per student performing the
experimentag}pn. These uniform pieces may be rulers,
meter sticks, 1 1/4 inch wooden lattice cut to
uniform lengths of 18 to 24", etc.

Can you arrange a pile of slats at the edge of a table so

AN

that successively higher slats extend beyond the edge of the

table until at least one is completely beyond the edge of

the table? .
Note: Students will set up many arrangements of slats that will
collapse on them. Encourage them t&héxperiment with

¢
different arrapgements until some students are successful.

Their success will spur others to greater effort.

| 121
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Circulate among the students. When a student 13 successful
ask him how he did it., When geveral students arc successful they

may be encouraged to make a3 record of their solution using

) &
pencil and paper.

N
Write d how you would explaln your solutioqﬁto a

/g;iend i nya who might want to know how to do this.

Encourage students to make correct interpretations of their
set up by asking questions that would show up inaccurracies or

weaknesses in thelr diagroms or explegﬁtions.

Using a8 many slats as you wish, how far out from the

edge can a slat be supported? '

Algo = = = -

Apparently it makes a difference how many slats you have.

What is the maximum distance to the end of a slat beyond

the edge as the number of slats increases?

Notice that: (a) Students will readily find that with ome slat

b
the maximum distance end of slat to table, D,

is 1/2 the length of a'éﬁat, L. With two slats

D may be 3/4 L and that with six slats D may

be greater than L.




. - 11
v ‘ ‘
(b) An example of a student's solution, in point
shown below, had the sequence of gaps 1/2, 1/4,

1/s, 1/8, 1/10, 1/13,

-

Some sequence like this:should be presented to the class for
discussion., Ask if they can pick out any fractioms that'séem
out of place‘and, 1f‘so, what they can substitute ;n their place.
Students might suggest that 1/5 and 1/13 should bélreplaced by
1/6 and 1/12 respectively. They might further suggest that the
next term in the sequence should be 1/14. This means that an
additional slat could be added with 1/14 L‘gap. When another slat
18 added with a gap 1/14 L ,fﬁe érrangement extends further and
will not fall, At thiéfpoint, gtudents in the class may divide
in opinion as to whether this couid go on forever or that sooner
or later the slats will fall, ¥

When students have all had an opportunity to experiment

_hanging over slats and have formed an opinion regarding the extent

to which slats can be extended suggest -that they hang over slats

with gaps making the sequences 1/2, 1/4, 1/8, 1/16, 1/32+ ...

P~
¢




many slats they use they will not be'able to sup;gyt a slat

beyond the edge of the table.

Students will determine by experimenting that no matter how

/

We may’investiéate the difference in these two sequences

by looking at the patterns of successive sums of terms g@ -

(partial sums). iéé us call these sums s , etc.

1* Sp 84
for suns of the. first 1, 2, 3, ...éterms. What

difference in patterns do you find for the succegsive
sums using these two sequences? Does .this help explain

R
why one sequence allows "hanging over" and the other

does not? _ LT )
o o, @ Lo a1, 4+ 2

Note: The definition for adding;;ational.%umbers‘b 4 8

and , "‘

YA 1 _70+8 . . .
and 8 10 - 80 : )
{

Exercises . : ,

3y

1. Write an explanation for a friend in California who is
familiar with*the "hanging over" problem using uniform

o

" slats that will convince your friend that the §eries of
gaps 1/2, 1/4, 1/6; 1/8 1/10, ..., etc. allows a slat _ " N
to hang over, whereas the series of gaps 1/2, 1/4, 1/8, |
1/16, ... does not. | , , ‘!’« -
2. Explein the possibilities of "hanging over" slats whose .

lengths‘are successively 1/2, 1/4, 1/6,(1/8, cees or'l/?,

.1/4, 1/8, 1/16, ... or some other sequence of lengths. ;

\
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L

Research Notes.on Over the Edge ¢

1. , Tim Barclay posed the following problem:

Arréhgé 8 rulers on a désk, and on top of the other, ®

that the uppermost ruler was hanging completely off the edge of the desk.q

Few of us érrangeﬂ them in the same way that he did. When asked

to tell why he did things the way he did, he came up with mathematical
argument,
Suppbse that we had one ruler to work with, how far out could it stick:

- d .
. u

. N

Clearly, half way. (Let us assume from now on g;at we shall be using

rulers of the same length and wéight which is evenly distributed along

& -

tﬁé 1engths;‘for the sake of discussion we shall assume they are all
1 unit long.) , N
Suppoéé you‘had' wo rqlers; now how far out could you project

the furthest one, stacking them on the desk?

<

You may be able to see other ways of maximizing the extended distance,

"\

+ but this diagram shows the best you can do withi two unit iength
rulers. Looking at the bottoms of these.rulers, we see two "ga{i“, one

under bhe’first ruler, until the second begins; the other gap underneath

- the secohd ruler ends with the desk top.
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Now you have three rulers, again all one unit long, and you have to stack
thew to extend one ruler as far cut as possible. What do you do? (Try it
and see, before reading onl) At t?s point, many people quess on the hasis
of the two previous "gap" distances, 1/2, and 1/4, that the new gap wilri be 1/8.
Ard th:y arrarge the three rulers: |

J..l:_z."r‘ﬁ—M 3

If you try this, you realize that it is possible to sl e bottom ruler
further out than 1/8, in fact out to 1/6 for the third gap. 'In inches, if the
rulers are all Zme foot, that would be the difference between 1 l/gl‘,inches and
2 inches easily seen. (Of course, all these distances are scmewhat off, because
these gaps are never quite realized due to the necessity of making sure that
the rulers ‘don:ut,fall over.) | »

Now the sequence of gaps is 1/2, 1/4, 1/6. BAny guesses for the rest of
this sequence? Try them out and see, before reading further.

2. There same principles of physics that help one predict how these
rulers can best be arranged to maximize the extension of the tgp ruler. Wwhat
we seck, mathematically, is to slide out the set of rulers in such a way that
if any one n.ller were to be extended any further it would tip over the edge/
of the ruler right beneath it and fall to the ground. That means that the
weight of all the rulers above a given ruler is just balanced at the edge of
that given ruler. In the case of the top ruler, if it is extended 1/2 unit out
above the next  ruler, the balance point will be the center of mass of the first

and second ruler, since the first rests on it. Looking ag diagram 2, if

© 128




Q

115
the top ruler is out 1/2 over the second ruler, then the weight is symmetrically
distributed oyer a point 3/4 from either end, or 1/4 from the end of the first
gap ihefthfrd ruler will have to end at that point, producing a gap of 1/4
between it and the end of the second ruler, to maximize the extension of the
top ruler fram the desk. (In diagram2, that ruler is the top of the desk.)
M'nataboutthethirdrulér? Can you calculate the center of mass of the -
three rulers (with gaps 1/2, 1/4) to see where the fourth ruler ought to end?
Try it and see. (If the rulers have their weight uniformly distributed along the
length, then you can assume thatg]l the weight is concentrated at the center
of the ruler , or /2 unit from either end.)

A
j ‘B c )

— e Y%"?"x#

.\lﬂ.(\f‘a—M l,L;

’1‘hesol:".d friarqlemﬂerthebottanrulerrepresentsafulcnm, upon which the
block of rulers are exactly balanced. How far in from the end of ruler three
srnuldthatfulcrunk;? Wecallifx,andproceedtobalancethe'mreqtsof

the various rulers about that fulcrum, each moment being the product of

the weight of the ruler (say they are all one ounce) and the horizontal

distance fram the vertical line through the fulcrum. Some moments counteract

others, sothatwéshallhavetbcallthoseterﬂingtheobjecttorotate’
clockwise to be + moments, arﬂ-‘tl'xoseterdingtheothermtatimtobe-mnents.
Wegetforthesmnof.hallthenments (which should be zero if the object is

R

balanceq) : ' , _ \ |

R

-1l +x)+1(1-x)+1Q-x)=0
4 2 r~

Solving this equation, we get: x =

L
6
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3. Bt this pojnt, someone will suggest that the sequence is: 1/2, 1/4, 1/6,

1/8, 1/10, 1/12, l/%ld, ... and that the nth term will be 1/2n .o Can we
.prove this? It might still be useful tb check out the 1/8 for those who

consider this too bazardous a guess.

Let us assume that we have stacked "n" rulers to maximize at each stage

theactensionandﬂuatwehaveqottmthegapsasprﬁdictedabove. Let us

see how we might best add one more ruler, the (n + 1)st ruler, at the bottam
""of the stack, and what the gap for that last ruler ought to be to maximize

the new extension.

1 € ' A
\ 0/2 | \ /
m 1
@ rulers
P - \
J\u.c‘ra.m 5 N J
T ,\
w ' - '/a.(,\-n

/

According to the predictions, the gap between the nth ruler and the next ruler
should be 1/%. This means that the top n rulers should balance at a point
1/2n to the rijht of the nth ruler's end. If a fulcrun were placed there,
itsrmldbala}pe. Do you think it will? Let us place the fulcrum a distance
(see diagram 5)and calculate the distance x by balancing

_the positive and nega ve moments. (Remember, the previous (n-1) rulers must
\ adofthenthmler,orapoth:.rfdiagranS-—

that is why’ that r"er&ﬁs placed there.) &
N ,

A

--l)x+1(l-x) =0 ar x=
2
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This is exactly what we predicted would be the gap umder the nth ruler.

Those who recognize mathematical induction will see that what we have
done in effect is to prove that our preflictions for the sequence of gaps is
correct. Those who are not faniliar with induction proofs can see that what '
we have shown is Q: "If our pred:.ctlon — our theory =- is correct for the
case of the (n-1)st gap, then it gives correct predictions for the nth gap.”
g_u_ti nhcould be any number (bigger than 1). If n=4, what this theorem means is
that "if cur predictions are correct for the 3rd yap, then o;1r predictions
are correct for the ‘4t.h' gap." .But we based our predictions on what we_knew
about the first three gaps; so ve know our 3rd gap prediction is correct.

The statement in quotes then tells us that our prediction (1 = l) is correct
2 .4 8§

for the 4th gap. But going further and letting n=5, we can conclude; "If
our prediction is correct for the 4th gap, then our prediction is correct
for the 5thgap." Again we have just seen that our predictidn, 1/8, was
correct for the 4th gap, so this quoted statement says that our predfction

(L =1) is correct for the 5th gap. This could go on and on. And it does.
2.5 710

It j.s clear that proving Statje“mti, Q which involves the indefinite letter n,
means proving an infinite chain of statements that link together to prove
that every one of the gaps thatwepredlcteda‘tthebegmnmg of sectlon
3 was correct. Proving statement Q is kind of like proving th‘:lt "you can take
a step up a ladder." You can deduce fram this that you could rise. to any
step on the latter by repeated use of the statement in quotes. If you
understand this argument, then you understand the essence of mathematical
induction! : s

4. How far out ocould you go, if you had as many rulers as you wanted?
Any guesses, before you read further? ) :

If you have n rulers, the gaps between the rulersg are: 1/2, 1/4, 1/6,

1/8, 1/10, ees 1/2(n+1).But then you ocould slide the le bunch of n rulers
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out past the desk, using the desk corner ag the last fulcrum to get another gap

of 1/2n. So the question really boils down to:; what 1s the oum of 1/2 + 1/4 + 4/6
1/8 + 1/10 + ... + 1/2n? 1If you factor out 1/2 from each term, the sum then equals
1/2 of the sum of the geries 1 + 1/2 +1/3 + 1/4 + 1/5+ 1/6 + ... + 1/n. What

is that?

Those who have worked with series before may recognize this as a harmonic
gseries. The first texrm 1s twice 1/2; the second term equals 1/23 the third and ”
fourth terms ave respectively greater than and equal to 1/4, and so their sum
is greater than 1/2; the fifth t;rough eighﬁ% terms are gach elther greater than or
equal to 1/8 so they add up to greater than 1/2; the ninth through sixteenth termg
for the same reasons add up to greater than 1/2, and so, always groups of terms
add%ng up to more than 1/2. This sum can thus be made greater than any number
you choose; this {z a property of a certain category of divergent series. What .
doqg this gay about what kind of extension of the top ruler is possible; using
as many rulers as you want? Does it help to calculate how many rulers you should&

order so that you can extend the forward edge of \he top ruler 2 units out from

the desk top?

A

5. We still have before us the general question: how should we arrange
a given number of rulers to produce the maximum extension? About all we

have shown is this: 1f you build a stack &f rulers, extending over the desk edge,
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by the special progéss-~of stacking up all the rulers you have and first extending
/.

over, as_far as you can, the top ruler, then extending the top three rulers

until the balance point is reached, etc., ..... you will get gaps between the

rulers equal to 1/2, 1/4, 1/6, 1/8, ... 1/2n. What it doesn't tell us.xdSut

is whether we oould get a further total extensién of many rulers, if we didn't
proceed in exactly that way. Who knows, it might still be true that if we

were more oonservative at the beginning, for éxaxﬁple, not extending the top_.
ruler so far, or not extending the top two rulers a full 1/4, etc., we might

be able with the remaining nﬂgrs to produce an even bigger gap. Wl'n can say?
For me, this is an unsolved problem. I have looked at what happens in scome
simple cases, in which I do not push the top ruler out as far as 1/2, but instead
out a distance of % - e), whspre “e" gtands for some small pogit-l.ive quantity,

as yet undefined. Then with tvm rulers, one can see how big thé next gap is.

<

)

rw’,_—e\a\e- X B

Diagram 7

Balancing the maments as before, -l(x-e) + 1(1 —x) =0
’ 2
or, x = }_ +
4

N

Now, it ig true that this second gap has increased by e/2 over the usual case,
but the total extension now is (L —-¢) + (L+e) =3 -e , or ¢ less than before.
Thus, it seems that no matter what the reguctfon f:cmzl/z i for the first gap,
the second gap never gains encugh to make up for that reduction. It might be
useful to set up a big stack of rulers arranged acoordj.té to the usual pattern;
thennoveinanyoneoftlemlecspysmedistanceaxmdseeiftheoﬂmerscan

be extended so that:
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'
fall over the edge, &nd

&

o
2) the total extension is greater than what the theory predicts for

1) at none of the edgesﬁf!’o the rulers resting above that edge tend to

that many rulers.

6. Would it help to beat the "theory" if we allowed stacks with same
rulers projecting above the ones bélow, as usual, and some rulers pulled
back from those below? . i —
(. j | - .

wOuldithelptOpullbacktheupperrulerstotheextentthatﬂmey

; tip backwards, like so?

L
- |

Diagram 9

4 7. Another question sugg;ited by this is:

l Given boards of lengths 1, 2, 3, and 4 units, what would be the best way to
i arrange them so that you get the maximum extension over the desk's edge? It
isworthwhiletonakeboardsoftheselengthsandtotrytoarrangethen

; yourself to maximize the extension, it is not at all obvious what the best

a
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way is. . ,

;I‘here are two methods which are suggested immediately, which
produce unexpected results. One way is to stack the boards so that the
largest one is on the bot'ocm and the smallest on the top, %he other way

-~

to stack them in t.he reverge Gider, that.is, the l%rgest on the top and

the smallest on the bottdn. . [(It Jooks weird when you do it). Which do you'

think will give the grea extension?
It is possible, by the usual method, to calculate the gaps

for the four boards, for each of these arranggnents, maximizing the extensions.

« O s
Diagram 10 | h.
Xy i the diagram 10 is clearly 1/2 unit. To calculate xa_, we concentrate the K\}
weight of the length-cne board at its center, 1/2 fram eithelr end, and the
_widight of the length-two board at its center, 1 unit fram either end. The
'manent about. the leading edge of the third board is: -1(xg) + 2(1 = %) = ¢
or xa 2/3. To get X3, a smu.lar calculation %or the moments about the
leading 9dge of the fourth lbard. ’—l (x3.+ 2/3) - 2(x3 + 2/3 -1) + 3(3/2 = X3)
= 0, or xv3‘= 3/4, and X4 =4/5, Are there guesses for what happens if we continue
with boards of increasing dimensions? Will this sequence get bigger and
bigger? Will it get bigger without bound? Or is there same number,'paspt
which it doesn't get? What is that number ?

Sticking to the 4 board problem, what if the biggest boards were
on top? Is it concei\{\a{ble that the total extension is greater than 1/2 + 2/3 +
3/4 + 4/5 = 163/60?

Diagram 11

1345
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Of course the x = 2, smce;met@boardlsdumtslong To get the x, we
sum the maments about the leading edge of the third board:
—.4(x2') + 3(3/2 - xz) = 0 or X, = 9/14

To get Xg° -

-4(9/14 + x) + 3(3/2 - 9/14 ~ x3.) +2(1 - x3\ 0, or Xy 3»2/9;

and to get %3
~4(9/14 + 2/9 + ) + 3(3/2 - 944 - 2/9 - xb + 2(L = 2/9 - x,) +
1(1/2 = x,) =0, or x,= 1/20. |

The total extension is: 2 + 9/14 + 2/9 + 1/20 = 3673/1260 = 2.91 lapprox) whereas

it

163/60 = 2.72 (approx). This, as absurd as it looks, the second arrangement
extends further. Do you think this will be true for only three of those
boards: lengths 1, 2, and 3? What about five boards, le’ngths 1, 2, 3, 4 B
and 57 What abbuf boards of lengths 10, 11, 12, 132 |
This raises the general question of boards, of uniform density
™ (weight per u‘nit length), where they vary in total length. ¢
What about boards of the same l'ength but of different weights?
_ Same heavier, same lighter? What about boards where all these characteristics ‘
are varying? What is the bést scheme for extending them over the desk edge? .

Maybe same experimentation will suggest a general solution to this problem.

it

. O ‘ 13‘/£. . -g
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1

Switches and Batteries =

The purpose of this unit is to involve the student in the discovery

‘of a mathematlcal cystem suitable for describing a particular physical

situation. .The student also encounters a part of our technological
environment. That the technology is in the form of a-switch is not
important. What is imp;}taﬁt is the idea that mechanical and electrical
things are not too complicated to understand; We want to-get the student

to ghink, "I am smarter than that gadget and I can figure out how it
% \ ‘ -

works." :
1
o

Materials required for a class of 20:

1. 50 Fahnestock clips #33-7102 — $ .45
2. 25 D cell batteries #6256 — $3.00
3.1 r§11 vinyl plastic electrical tape #99-H-8015 - $ .54
4, 1 - 6 1/4 inch long nose pliers'#iB—H=5578 - $1.19
Lafayette Industrial Electronics
1400 Worcester Street (Route 9)
Natick, Mass. 01760 ©

.4
5. 1 copy Lattices to Logic by Roy Dubisch

Blaisdell Publishing Co.
135 West 50th Street \

New York, N. Y. 10020 =~ 0

136
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~ 6. 1 copy each Batteries and Bulbg, Books 1, 2, 3, 4 — $6.27
Sc:ience Service Desk,
McGraw Bill Book Co.
Webster Division
Manchegter Road
| Manchester, Misscouri
7. 75 single pole single throw switches (slide switches): H.H. Smith
type #515 — $9.50/100
8. 25 bulbg, G. E. #46 — $3.26 )
9, 25 miniature screw base sockets: H.H. Smith type #1934 - $11,00/100
Terminal Hudgom Electronics 65.
?36 West 17th Street
New York, N, Y. 10011 .
"10. 1 roll 100 feet bare copper wire #20, 22, or 24
(Alpha Wire Co. #297 is auitagle and may be obtained from;:
DeMambro Electromics -

1095 Comﬁonwealth Avenue

Brighton, Mass.)

R

ERIC 130 |




125

At the beginning of a class pass out a battery, bulb and socket, and
some Shqr 6 inch pieces of bare wire but not any switches:"lf you wish, A
you can ask, "Can you light th; Buibé" ﬁdwever, no one will be listening
to you as they will all be t}ying to light their bulbs, (This is a good
unit when you have laryngitis.) The number of afﬁdents who have difficulty
lighting a bulb is often large. Some may even be afraid to piik'up a batterf,
80 be prepared for anytﬁing. At this tiye the need for a continuous
electrical path, i, e., a "closed circuit," may come up inhthe discussion,
If so, good; if not, it will ccmetﬁ>1ater vhen suitches are part of the(

2

circuit,

After a student has found how to light a bulb, pass out a .switch and

the makings of a battez& holder.

o

Three tlays to Make a Battery Holder

Using a Rubber B&nd, Paper Fasteners and/or Fahnestqck Clips

°
q

-

Having a few battery assemblies re@dy‘t? show the students ?s the best
way to dempnctfate their construction at thig.time. You may' also want to
give a general demonstration on how wire can best be wrapped‘;round the
various terminals, It reqlly is very easy. One simply pokes oﬁe end of

., the wire through the connector hole and then, holding the long end, wraps

<




the wire 2 or 3 times around the-tegﬁlnal
Yo B .

A connection like the following is not very satisfactory as both open and

short circuits easily ogcur?/

\ /\_.\ N i' | | | )
_ | . . @ "‘\\ ,...\__ T~ ‘_'/[”“\\\
~

= =TT

Moreover, with several switches connected as lgove, ev;rything starts
flopping'arbund on the desk, Another possibility, and perhaps a more
desirable one, is,to give individual wrapping instructions to students
needing help as you move about the room, It is also helpful to have pieces
of black electrical tape available, ' These can be’uaed to tape floppy
circuits to tﬁ; desk in dire circumstances,, They can also serve as an
R alternative to the Fahnestock clips to hold wires to the battery.
Before the students get involved in puttiﬁg their switches in a
8 circuit you might ask if they have any ideas as to whicﬁ is the "on"
position and which is the "off". Many in;tinctively know that C:i!h iae
“on'" and d!&:;l is "off'", However, most students tend to make_bt;tementl
. iu terms of,ri;ht or left or some other irrelevant parameter. Few will

look carefuli& at the switches, see how contuc&l are made, and give a clear

description of the switch operation. A few students should be encoufaged

<
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to take a switch apart, using pliers, so that everyone can see how At
; works, |

When ctudenta hook their switch up with a battery and bulb; two

circuits come up%}ith about equal probability. _ TS ' ) i

4 |

i

Pictoriﬁl Diagram .. .. Equivalent Schematic Diagram

CIRCUIT I L
r——}_ . 'L_ ]
O f:j —
O—
|

Pictorial Diagram Equivalent Schematic Diagram
CIRCUIT 2

In Circuit 1 the bulb lights when the switch is E:;!} , 1o &,, "on",
In Circuit 2 the bulb lights when the switch is 'EJ:" , 1. e, "off ! ,
A good argument should now ensue as to which il reallyithe “'on'" position,

While the argument pfoéeeds, evérydne should keep the switches in the position

that lights the bulb, Otherwise, there will be a number of dead batteries. >
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A

Y
4 oy

b The problem of vhy the bulb lights in both these circuits implies
the question, . Why does the electricity flow in the wire rather than throuzh

the bulb? At this point, if the class is interested, it can pursue a at&ey

 of electricity using the ideas in the Elementary Science Study unit,

Batteries and BulLs as a basis, .

Going on té the Boolean Algebra aspect of this unit, a second switch
can be ngsed out once the students agree that Circuit lrepresents all
valid switching circuits composed of a single switch, battery and bulb,
With the second suitch, the question is again to look for various types of
switching circuits, ’

Hhen several circuits are drawn on the blackbeard, discuss which are

7
really the same (v7ith respeg€ to the flow of electricity) and which are
¢ .

" really different. For example

are really the same electrically but slightly different physically. There
[ .
ace only two possible circuits with two switches that are electrically

different:

S N

114 .
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These switching diagrams are simplifications of diagrams of the whole

circuit,

y .
./ / Q N\___ D
| and --<<:::/, |
| | |

| i

o——
omet—
-
-

but the single bulb and battery remain constant throyghout, thus making the
switching arrangement thé,only varying component to diagram.
s Also consider what circuits can be made with three switches that

light the bulb. Diagrams and discussion. (There are three possible circuits.)

: 3
W

e’, Aff 475/ all on

7 \ , |
» 2 or 3 on
s/ - :

1, 2, or 3 on

AU

v
Encourage stueehts to try for simple r:zresentationa, even to & represgentation

s above,

that does not involve drawing a~switch
After maybe one more switch question (light the bulb with four

switches) aﬁi, Since this is a class in mathematics, can you represent the

state of a switch (i, e., "gn"\gg "off") with g number? T think this
question is crucial to get to a "0'" and "1" representation. '0" and "1"

are the two "simplest" numbers to use, '"0" is a logical choice for "off"

as nothing happens when the switch is off. It is really arbitrary whether

o | 141
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off i5"0"or"1", but it is much more convenient to use "0" when we go to the

algebra, By this time a circuit might be represented as

—®O— }————

. s
From now on most of the discussion can be abstraect; howgver, the

suitches are always available for the doubters. At any p&fnt in vhat follows
there 158 a direet correspondence between an.abstraction and the svitches.
This is a particular beauty of two-valued Boolean Algebra;

. Now consider the two switch circuits vhere A and B simply refer to

&
. a given switch,

ThemZact that (::) is a series circuit and (::)1. a parallel circuit might

be méntioned and used, The words are not important but their use is

-

: con%qnient. N

For these two-switch circuits, all possible 6n-off arraﬁgementa can
be listed, and the further question posed, '"Can you find a way to replace
each of the 8 sets of two switches with a single switch?" (The switches

labeled C below represent the single switch substitution,)

D

4

N0

@9@6’
e6eee -

ww
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s
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C

One can write down the tables for the above switches:

Series Circuit Parallel Circuit
A B C A B C

T 1 "1 1 1 1

0 0 0 0 0 0

1 0 0 1 0 1

0 1 0 0 1 1

Ask if anyone sees a similarity between thé switches and mathematics,
Maybe write down all the tables for addition, subtraction, multiplication,

and division with the numbers 0 and 1:

.

-]
.
[ 2]

a+bz=c¢ a->bm=¢ axba=c¢

1 1 2 ) § 1 0 1 1 1 1 ) § 1l
0 0 O 0O 0 O 0 0 O 0 0 ?
1 0 1 1 0 1 1 0 0 1 0 ¢
0 1 1 0 1 -1 0 1 o o 1 0

R
Now what similarities are there?

Let's see vhat happens if we think of a series circuit as being
similar to multiplication and a parallel eircuit as being equivalent to

addition but with a funny rule for adding 1 and 1, You might want to use

O ‘ . i _1‘1 \3
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QD and (3) as the "addition" an& "gultiplication" symbols in this algebra.

Ve have made a correspondence between switching circuits and the following

tables: ’
AG@B = ¢ A B = C .
1@ 1 = 1 1@ 1 =1
0@ 0 = 0 0 ® Q> O
1 6 o 1 1 0 =0
o@ 1 = 1 0 1 = 0

From nou on the letters A, B, C, etc, can be used 85 a variable
(with only two values). It also represents a switch which can be in either -
one of two gtates.

While it shouldn't be discussed in class at this time it shculd be
noted by the teacher that @ i3 equivalent to "or" and @ is equivalent
to "and" in the context of such logical statements as;

1f X 15 true or Y is true then Z 18 true.

If X 1is true and Y 13 true then Z 1s true.
This equivalence and a discussion of logic can serve later as a separate
unit. One more equivélence not to be mentioned in classa: (:5 and (g)
correspond to union and intersection respectively 1q the language of scts.

Now with this "multiplicatioﬁ" and "addition'" table available let
the students discover some zeneral properties of the System:

T a @®a = a

@ a ORILER

(3 Aa(®0 = A

%) A@GE)B = B @) A
Remember A is a variable or a switch which cdn be in one of two possible

positions. I don't think it is worthwhile to call (4) the "commutative lagJ

143
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for addition", but it might be called "John's Law", after a discoverer,
to give it and John some importance. In the above and what follows the
similarities between various properties of this system and the axiocms of
ordinarf algebra and arithmetic should be discussed. It would be wise-to
refer occasionally to switches and what physically A (E) B and ﬁ (:) A,
for example, mean,

More generalities:

Gy a®@o =0
(6) A @ 1 o A /,,,/\

. /
(7 Ax a8 = a4

8) A ¥ B = B@A
For three elements: -

(9 (@B @c = A@(B@Cy)

(10 A @B @c™=a® (B 0

1) 2@ E®C) ~(L@BDDMA ® O
What do the above mean in terms of switches? 15 everything still the same
as in ordinary algebra and arithmetic? After all we have a pretty funny
addition table that we started from. ;

There are circuits in which we would want two switches t§ always be

in the same position. For example, the motor and amplifier of a tape

recorder should be on or off together, In the following circuit,

i

O~ 0
_—Coa—CQ!})_

b,

2

:
|

b

\

the two upper switches are either both open or both closed at the same ti@p,

hence we can designate them both as A, Now a tricky question: //A

144 . | /
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that 1s (A @ B)@(A O C)? (This represents the above circuit;)

@6 -[6®n@)On @ »Ed]
-[ee voe @nolr e ooc @ o
but/ (A @A) = A
= A @ BB ® O ® 0
AU OOEE 9
and since (1 @) B)-/l, L@ C)=1,and (A @ 1) =A
-A® 6 GO
Compare the word statements aboyt switches associated with the initial and
final representations above and see that these both ‘make sense.

There will also be occasions when you wish one switch to be off when
another 1is on, Fo;' exmnpie, if a loudspeaker is used {dn conjunction with
a tape recorder and a radio (and operates continﬂuoualy) you would want the
radio off when the tape recorder is on and vice versa, We can represent
such a situation by calling one switch A and the other A. A means that if

Ais 1, ?i\ta 0 and 1f A 18 0, A is 1, It is equivalent to "nmot A",

What 1s A () A? (1)
A @ A (0) T &
o @)
140




Some problems:

v

Express the following arrangements algebraically:
(1) (A
Ny

(2) @
_< \ >— "

3) < >_ ’

e

@)

C

,< N ce
i(

4 .
(4) ‘ @

®

() __@__( et CN\e ) *
—o~o [

\/

s}

(6) Drav a yittng diagram to 1illustrate:
() A D>
®) A®DB @B
(c) A ®BDC) DB
) A@ @€Y
(&) WE®BNDEB@OC

More problems:

Design a new circuit with fewer switches that will do the same as

the following: \
(7 —/ -® AN
—® N—) Y ®
Y/
Q(s) < @ ' >
.......@ pd
—3) X
Q ) .14 l‘
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®» —o—C g

(12) __ | b'@'_ | </
—o—{ I+

Solutions:

1) A@® s

(2) (a @%B) ®c

MA@ OC

WA be ceal

DA POcOUEMN]Ec

(6) & ___/"'"
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o :3—— ;
. 050

\J

(M A®E@CDA= AR BDO) __,@_Cg}_

® 1@uED - WERHOUEN ~ADUEM =4  __@)
) CONECOL = CEVO CEID BBHHE BN
=4@UEIONO EE)

=A@ (B®C) (3)
ll. |

19 WONEAOIO U = 4O BED O KGO A
(See problem 9) - A'@(lOQ’@(B@(!) |
| KOO K

—Coo—

(1) A@AED) = A@H@ AP
X OO . — ()
L Ol |
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Map Cbloring: Activities, Conjectures and Proofs Concerning
Maps On A Plane and On Solids, the Fivc Color

Theérem and Euler's Theorem
This unit on map coloring ia designed to achicve maximum
student involvement in discovering problems and {prning hypotheses.
'Henee, it 1is essentisl that the student be unaware of the vast .
literaturc on map-~coloring until after he has worked his own way
! into the subject. After the class has formulated the four color
conjecture, it would be a good idea to tell them of the long
history of this conjecture. ' :

This unit would work best with a class which has already
studied the regular solids. If the class has not done so, it ) ’
would be poaaibléﬁto skip the applications to feguldr solids,
but it might be better to work it in with the rest of the unit.

Chapter 13 of the book, Mathematics, the Man-made Universe by
Stein, contains a clear exposition of map-coloring. The pamphlet
Multicolor Problems by Dynkin and Uspenskii, contains a large number
of problems, applications, and examples.

The material of this unit has been divided into the five topics
indicated below. The Jourth and fifth topics could be interchanged,.
or either could be omitted. The topics have been built around the various
materials nzeded. A possible schedule would be to cover the first
three topics in 3 or 4 classes, while the last two might take 3 or

-

so classes.

7~
15
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t

Classes 'may be conducted as laboratory ael‘i:lone with the

S e

instructor circulating among the students giv:lns new tasks and ,
problems to those students who finish what they were doing, try:lng

to help out those students who are stuck (vithout giving them too

nuch information), and generally encouraging ‘any kind of comstructive
activity. The unit should lend :I:tulf ‘to encouraging a variety of
student activity at many different levels, As the unit progresses
ths instructor may challenge students with completed maps to color

.

them with fewer colors. Students may then attempt tq u-lo‘fcwet.
colors ‘or they may assert that it is r;ot possible to use £ewet ’ |

colors. In the latter case studentl lhould give a convinc:lna O

argument why it is not possible, Although students -ay f:lnd " RN

this difficult at fifat, they should socon be able to present

8 reasonable argument, : .

o




v ) - - . ‘ "Unit Outline . .
. ® :
o I.° The coloring of geographic maﬂs; the ‘dirawing and coioring"
. \> . n of maps. v |
II. Maps which can be colored with two coiors. \
. I1I., 'ﬁaps which fequire more colors; the four color
L. . conjecture;, the history of the map-coloring proble;m.
. IV. - The equivalence between maps) on the plane and on | ‘
! ) the sphere; coloring the regular ‘solids; mai:s on
w o the torus, ) )
v. \Proof .of the 'fi\'zel- color theorem;‘ Euler's theqrem; . ’
\. < ap'plicat ions. )
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ap=coloring - I

Materials: Geographical outline maps of various areas in the
world (several for each student); broad, colorod flow-pens (more
fun to use than crayons)- of various colors (about 10 different 7
colors would be good, and there should be enough of them so that
each student has three or four . they Can share them to obtain
greater variety of colors); plain paper, colored chalk,

The goal of the first topic is to ihtroduco the idea of a
proper coloring of a map, and the notion of an abstract'(non-
geographicai) map. By actively participating in map-coloring and

map construction the student should be able to arrive at these
" notions for himself. The teacher can then help the class to
formulate precisely what it has disoovored. Ne suggest the
following outlxqg‘for the topxc.

It seems best to start with real (geographical) maps. ‘The
maps and flow pens should be distributed, with instructions
probably kept to a minimum, Toe class might merely oo told to

" color”the inaps in such £ way as to make them more clear. After

Co comparing efforts, the class should be encouraged to arrive at a

sot of "ruies" for map coloring. The following ideas should be

| brought out in some form:

(1) All of a given country should be color-d the same colo;.

(2) BEvery country should be colored (the white of the paper

‘can count as a color,‘if desired);
(3) If two countries have a common border, they must be
~  colored different colors. )
‘It is, of“course, rule (3) which is the key idea in map coloring.

?Crhe following points may well arise, They can be left open, or

155
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tie class may decide them as it wishes (they can be treated in
later sessions). e o -

(4) UVhat must be done with countries which touch only at a

' point (Colorado-Arizere)? Can they be colored the same

| color?
(5) What is the role of the ocean? Must it be colored?
Is it different'from the other countries?

The term proper coloring may be introduced for a coloring which

satisfies (1) - (3).

At some point the students should be encouraged to count the
number of colors which they have used to‘color the various maps.

If they have used a large ngmber of colors, they sﬁould be
epcouraged to try to color the same map over again with fewer
colors. The clase might compare notes to see who has properly
colored each of the maps with thASmallest number of celors.

The class should now take blank‘paper’enﬁ draw their own maps,
and then color them. After all, this is & mathematics class, not
a geography QQass,‘and the fact that the maps happen t;*;;rrespond
to geographical realities is of no mathematical interestf It is
the idea of map-coloring. which is of 1nterest., There isn'thenough
q variety in the geographical meps to illustrate adequately the (
: mathemat1cal ideas. In drawxng maps, almost anything goes. " The !

only rule' is the follow1ng.

@

(a) Every boundary llﬁsymust separate two different countries,

Kﬂence the following maps are not legalf

N
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The first maps drawn will probably tend to 1mitlto geographical
——._maps quite closely, The students should be'encourtged to
eliminate_tﬁose aspects of their maps (wiggly borders, otc.j which
are irrelevant to the map coloring problem. The following question' &
may be raised, and answered, for the time being.‘;s the class
desires: “
(b) Should every country consist of a single connected reg}on:
or may it have several parts (like East and Viest /i
Pakistan)? S
The idea of us;ng as few colors as possible should be kept in mind
throughout. One way to properly color a map is tb use a different
color for each country. But this is aesthetically unpleasing,
9conomically unfeasible, and matheméticaliy uuinterosting._’Therg
*  are many "games" whici can be built around this idea. A student
could devise a map which he can properly color with, say, five
colors. The class could then be challenged to color.his map with

five, or even with four colors. iiaps can either be drawn on the

K

board or can be quick{i run off on ditto,

Q 155'
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- Wap=-coloring - II.
4aterials: Blank paper; red flow péns; red chalk, /

The simplest maps to deal with are..those which can be
properly célored with two colors, Ve say that such a map can be
2-colored. A simple example of a map which can be 2-colored is a
map of a collection of distinct "islands" in an ocean, i,e.

' =

Another oxample occurs if we just draw a straight line across

the map. Ve can combine theée two types in a map of the form

O S|

.

We must now return to question (4) in the first session >¥f—\

<

countries yhfch.méut cnly at a point must be colored differently,

then the avove map is the most complicated type'which can be,

2-colored. Hence it is necessary to'a&opt the following rule (in

order to arrive at any interesting maps which can belz-colored):
Two countries which meet only at a point can be colored
the same color,
We can now construct a great variety of maps which can be
2-colored, by drawing sgraight lines and circles which may ?r may

not intersect. At each stage in the construction we simply change

all T:lors on one side of the line or inside the circle just

drawn\, The resulting map is then already properly colog;d with

two colors, s

150



“Constructing a map which can be properly colored using two colors.

3,

18,

A
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YWe a%so have to worry about the role of the "ocean", Por
'instahce, a checkerboard may be colored with two colors, provided
that. one does not wish to color the border of the board. If the
border is colored, the; three colors are necessary.

Once the class has established considerable facility in
drawing maps which can be 2-colored, they can be faced with the
converse problem; given a map, how can one tell whether or not it
canwbaw3ec@16?ed:- On way is-tfiai and error. If you succeed,
o0.k., but if youAfail, how do you know that it can't be done? .
The students should begin to see wiat is involvéd after some
experimentation, but to help them, they should be given the
definition of the degree of a point on a map (see the enclosed
sheet for the definition). They should then be able to arrive
at the following two conjectures,

I. If a map can be 2-colored, then every point on the map

is of even degree.

II. If a point on a map is of even degree, then the mapv can

\g<:e 2-colored,

The statements L and II can, of course, be combined into one, but

they should eventually be stated seperately, since I is almost |

trivial to verify, while a proof of II is considerably more subtle

(see pp. 176-177 in Stein for a nice explanation).

s
~ .
A |
T
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The Concept of the Degree of a Point on a Map

A point which does not lie on a boundary line has degree zero.

—r

A point which lies at the end of a boundary 1line has degree one,

(This never occurs on the maps which we study, since each bonndar&

must separate two countries,)

=D

A point in the middle of a boundary line has degree two.

A

The following points have degrees three, four, five, and ten,
respectively:
) P
,, -
P
: | | o
. ° o ““‘ \
' ) \
1

Again, if we are coloring an "island" and not trying to color

the '"ocean", then the result is slightly different. ©Namely, we
find that an island can be 2-colored provided that every point not
on the boundary of the island has even degree. (Stein's terminology

of wet and dry points may be used at this point.)




147

Map-coloring - III

[

idaterials: Blank paper, five or six colors of flow pens and chalk,

!

The object of this topic is to Qtudy maps which require more
than two colors, with the goal of arriving at the four color
conjecture, After the c1a§§ has arrived at the foﬁr color conjec-
ture on their own, they should be told the history of the conjec-
ture., (The sheet "The History of the Map-coloring Problem" may be
handed out to them at this point.)
| The class should first construct maps which can be 3-colored
(but not 2-colored), then maps which can be 4-colored (but not
3-colored), and then should try to construct maps which cannot be
4-colored. After failing at this they shoui& ﬁrfive at the four-
color conecture (with suitable encouragement},

g

. We notejsome pitfalls which may occur: ,

(1) Wwhile every known map can be colored with 4 colors,
it is not always easy to find the proper coloring. Often,
havidg arrived at a situation where a fifth color is necessary,
one ﬁust start all over aga:n to avoid this situatiqn,

;(2) If countries which meet only at a point must be
coloﬂed differently, then ft is possible to construct maps in
which n colors are necessarv, for any integer n. (Simply have
n couﬁtrles touch at a common point,) Henuce, if the question
of color1ng countries which meet only at a point has not yet
been :Ssolved, it must be decided that they can be colored the

same color. Otherwise the whole problem would lose all mathe-

matical interest,

16u
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(3) 1f countries'are allowed to consist of several
parts (Fast,and West Pakistan), then it is possible teo con-
struct maps which require n colors for any integer n (see the
enclosed sheet for a picture). Hence, if this question is

still undecided, such countries must be disallowed.

(If the class is not worried about (2) and (3}, it would be a

mistake to spend much time on them.)

"«-‘\-_,\
r -

161
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Maps which require many colors:

A. If countries which meet only at a point must be colored

different colors, then this map requires 9 colors.

B. If countries need not be connected, then this map requires

7 colors.

7 |

(The two squares labelled 1 are parts of the same country, etc,’
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The History of the Map-coloring Problem

1

"As far as we know the problem was first mentioned by Mobius
3

1

in his’ lectures in 1840. Both Kempe2 and Tait> published "proofs"

that four colors are s?fficient. Actually Tait merely proved that
the four color problem'could be solvéd if one could solve an
equally difficult probiem on the celoring of graphs. But peedless
to say, this graph problem is still unsolved to this day. The
error in Kempe's proof is more delicate and in fagt for tén years
the error went undetected until Heawood4 poiuteg out the mistake
in Kempe's proof. In this very same paper Heawood proved that

12

five colors. are sufficient, and it 4a this proof that we give ...

YAlfred F. Mobius, 1790-1868

ZA. B. Kempe, "On the Geographical Problem of the Four

Colors,”" American Journal of Mathematics, vol. 2 (1879), PP- 193-200
T

3peter Guthrie Tait, "Note on a Theorem of Position,"

Transactions of the Royal Society of Edinburgh, vol. 29

(1880), pp} 657-660.

AP. J. Heawood, "Map-colour Theorem," Quarterly Journal of

Mathematics, vol. 24 (1890), pp. 332-338.

From The Pleasures of Math by A, W.

Goodman, (Macmillan, 1965) pp. 93-94.

5

A
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Further Heawood solved the map-coloring problem en the forua, and

we give this solution .... This last result is renarkable,’ﬁecauee
the torus is a more complicated surface than the plane or srhere, and
noreally one would expect that the map-coloring problem would

be more difficult on the torus.

The fact that this problem in the plane, now regarded as .
unsolved, was considered as solved during the years from 1880 to
1890, 1s rather disquieting. It suggests that perhaps there are
today many theorems that we regard as proved, that really have not

been proved, because the‘"proofs" offered contain errors, as yet

unnoticed. N

Each student of mathematics has a duty to himself to examine

each proof ag carefully as he can in order to convince himself t.at
(

the proof is indged correcet."

a

"The problem of coloring maps with fourvcolors has a long history.
The experience of map makefs indicated that any map on the globe could
ke =20lored ﬁith ?our (or fewer) colors. Mobius mentioned it in é
lecture in 1840; de Morgan discussed it iﬁ 1850; and Cayley remarked, in
1878, that he could not prove it. In 1879 Kempe published an erroneous

proof in a paper that contained these remarks:

164
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Some inkling of the nature.of‘the difficulty of‘the
question, unless its weak point be discovered and attacked,
may be derived from the fact that a very smell alteration in
one part of a map mag.render 1tlnecessary to recolor 1t;
throughout. Arter a somewhat agduous gearch, I have succeeded,
suddenly, ‘as might Le expected, in hitting upon the we;k
point, which provided an easy one to attack. The result is,
that the experience of the map makers has not deceived them,

, the maps they had to deal with, viz: those drasn on a sphere,
S can in every case be painted with fég} colors.
The flaw in Kempe's proof was exposed in 1890 in a paper by |
'P. J. Heawood, which,began.
The DesgriptiGe-Geometry Theorem that any map whatsoever
" can have itswdivisions properly\distinguished by the use of
but four colors,’fro‘,1ts‘genera11tp enh intangibility, seems
to have arouse&ka go deal of interest a few years ago when
the rigorous prooﬁ oflit appeared to be difficult if not
1mpdssib1e, though no case . of~fa11ure could be found. The'
present article does not profess to give a proof of this
original Theorem; in fact 1ts ai%g are s8¢ far rather
'ﬁﬁgﬂ ; Qestructive than constructive, for it will be shown that there -

is a defect in the now apparently recognized proof ..;.

-
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In the same paper Heawood gshowed that Kempe's technique could
* be used to prove that every map on the sphere can be colored with

five (or fewer) colors." .

=

From Mathematics, the Man-made

Universe by Shg;mnn K. Stein.
. (Freeman, 196;§§pp. 183-184,
While the four;coior conjgcture has never been,proved, some pro~
gress has been wade on it. For instance, 1t/wa? shotm by Reynoldi-tn}
1526 that any map with at most 27 countries can.be'colored with four
cblor;, and. in recent years this has been extended to maps with at
most 37 cbuntriéa. Hence, if thgre is a map which cannot be colored
with four colors, it must be quite complicated, in particular it
@nat have at least 38 countries. This makes the task of trying to
con;ﬁruct such an example by trial and error rather difficult, though

. many people have spent a long time trying.
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Map-coloring - IV
idaterials: A small globe of the world (unmounted); the fegular
v solids kit; several rzgid models of regular solids (can be made
of wood clay, or plaster of paris, with the cardboard nodel

Possibly used as a mold); several sheets of thin, stretchable

rubber; flow pens; two inner tubes from automobile tires (optional)

The purpose of this section is to show that maps in the ﬁlane
are equivalent to maps on the sphere (at least as fat as any
- properties relevant to map-coloring are concerndd), to consider the
regular solids as maps on the spherb, and bossibly éo show that
maps on the torus (auto tire) have completely different éroperties.
The transition from fiat maps to maps on the sphere may be
hard for thg@:tudents fo visualize., The use of rubber sheets
allows him to see the process in action, and the results can be
quite striking. Wrap the globe with rubber, so that the rubber is
~ fairly smooth over most of the globe, except for the region where
the edges 6f the rubbert;re gathefed together, This latter spot
should be in some spot like the north pole, ‘hile thQ rubber is

held in place, the outlines of the continents can bs quickly

-skdtcyed with a black flow pen or colored chalk. When the rubber
is ‘Flattened out, a map of the wurld is obtained., There will be a
great deal of distortion in this map, The area around the north
pble,wirl be greatly enlarged and will 1ie around the edges of the
sheet of rubber. But this stretching does not change any properties
of relevance to map-coloring problems. Another natural place to
. put the gather would be in the middle”of an ocean, Then we would
ERk(I | IR 167 _. |
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truly find the ocean around the edges of the map. But now the
gather can be put in the center of a (fairly large) country, like
the USA or USSR. The resulting map will have the USA or USSA
spread out around the edge of the map, playing the role of "ocean",
“This should convince the sfﬁdents that in map-coloring problems

the role of the ocean is not sigﬂifiéantly different from that of y
the other countries, It might be a good idea to reverse the
process; draw a map on a rubber sheet while it is flat, and then
stretch it around a ball, making a spherical mép»out of it.

_The regular solids can be viewed as spheres which have been
somewhat flattened. 1f we regard the edges of the sqlids as the
edges of a map, then we ha;e map-coloring problems. It sqems ]
very worthwhile exercise to draw the corresponding flat maps. The |
rubber sheet supplies a perfect tool for doing this., Stretch the
rubber around the regular solid, making sure that the gather lies
in the middle of a face, Then outline the edges on thé rubber
with black flow-pen, When spread out, a flat map of the reéular
solid will result. After this has been done for a couple of solids
the.class should be challenged to draw the corresponding flat maps
for the remaining solids without use of a rubber sheet. The
solids (or the correspondihg maps) should then be colored, and Ehe
minimum number of colors necessary for each solid should be
determined,

Attention can thenbe turned to map-coloring on the torus, If
two inner tubes are available, one of them can be cdl around both
circupferences so that it can be flattened out, This should

erchle the student to see that maps on the torus correspond to map$

ERIC | 166 ,,
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on & rectangle where ihe top and bottom are identified and the left
and right edges are identified, The class should then be chal-
lenged to draw a map on the torus consisting of n countries, each
of which_gouches all of the other n - 1.‘ The Qa:imum such number
is n = 7, so there exi&t maps on the torus wyich require seven
colors. The remarkable thing is that it can;he proved that any
map on the torus can be colored with seven cblors. Henco;ma?-
coloring on the torus is an easier problem than map-coloring on tﬂe
sphere or in the plane. The followihg neat mgg,of seven countries,
each of which touches all of the other six, was discovered by the
mathematician Peter Ungar in 1953. After they have discoveréd

such a map, the students should transfer it?ﬁf the inner tube,

9 10 11 12 13

0 * " + 0
i | .
3 30
2' .: 2!
1 1
0 0
4 5 6 7 8 9101112 13 o0
D

' 1635

&2




The Regular Solids

(The extra face is the "ocean",)

Tetrahedron - 4 ;olors

Cube - 3 colors

“3

Q
&
Octahedron - 2 colors
: \ o

kil
,“”‘1'
&

Dodecahedron - 4 colors

Icosahedron - 3 colors

A

-
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hap~coloring - V

The fifth topic is the proof of the five color theorem. This
will require a much more active narticipation on the part of the
teécher than the previous ones. It would probably be best not to
devote a-class to the proof, but rather to encourage those students

‘who are interested to read the proof on their own, or to organize
a special outside class.,

A quite readabl? account of the proof of the five color
theorem is to be found in Stein's book, on PP. 184-191 (the procf
is given the:e in great detail - it is not as complicated as onc
might think from the fact that it occupies eight pages). Henc; ve

shall limit ourselves here to commenting on Stein's proof and
! &

i
R el

~indicating some alternatives,

(1) It is now necessary to introduce the word "vertex".
Previously we have dealt only with the countries and the boundary
curves of a map. But the proof of the five color theorem (particu-
larly in Buler's theorem) depends heavily on a careful counting
procedure, and to do this we must choose certain points on the
boundary curves which we call the vertices of the map. BEvery

: point)of degree greater than two must be a vertex, and some points
of degree two may also be vertices. Each edge will start and end
at a vertex, and will contain no vertices in its interior.

(2) .On page 184 Stein remarks that the figures in (12) ars
not countries, This restriction, while convenient in his proof,
is not essential, I£ a country X surrounds some other countries,
then the surrounded countries can be colored completely inde-
pendently from the .rest of the map, with X treated as an oce-»n.

-Ricrther Lemma 3 (Euler's Theorem) is true for much more general 171
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types of maps (see below).,

(3) The proof of Lemma 6 is by natheﬁatical induction. 1If
the students are not familiar with m#themutical induction, they
might find an argument by contradiction move convi;cing. This would
go as follows: "Assume that the statement of the lemma is false,
Then there exists a regular map which cannot be colored with five
colors. Among all such maps, pick one with the least number of
countries. Then proceed as in Case 1 or Case 2." (Note that
Lammas 1l and } could also have been proved by nathqmatical induction..

(4) Case 2 in Lemma 6 is somewhat more cohplicnted than
Case 1. The method of Case 1 is easil; seen to yielg‘a proof that
every map on the sphere can be colored with six colors. -

(5) Lemma 3 (Euler's Theorem) may already have been se;n by
the students while studying the regular polyhedra, It would |
probably be a good idea to go over the proof again., The following
treatmént is perhaps more likely to enéage the imagination of the
student than the one given by Stein,

v Consider s map on a sphere or on the plane as a network of dams.,

All of the countries are below the water level of the ocean (any

country may be designated as the ocean). To visualize the rest of

~ the proof it is easier to think of the countries as forming an

island in the ocean. See topic. IV. There are only two restrictions
on this system of dams: )
[i] Each dam starts and ends at a vertex and contaiﬁs no
vertex in its interior.
{ii] The system of dams is connected, so that it is possible
to walk between any two points on the dams along the top

of the danms. 4
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e will now.flood the entire world, but will do this by destrqitng
as few dams as possible., Thus, we will always destroy a dam which
is dry on one side and wet on the other. In the end we will have
a network of dams completely surrounded by ocean (with no dry
1and). Each time we destroy a dam we flood one more country and
hence reduce the number of dams by one, and do not change the
number of vertices, Hence the quantity
VeB+(C

remains unchanged throughout, gow consider the final system of

. dams, complefely su;rounded by water, We claim that there is one
and only one path along the dams between any two vertices. If
there were two routes between the vertices A and B, then these
routes would surround some land, which would still be dry, If
there were no route between A and B, then at some stage we would
have destroyed a dam which had to be crossed to get from A to B.
But if there was no way around tiis dam, there must have been

water on both sides, and sucﬁ dans were not destroyed. Hence

there is precisely one route from A to B along the remaining dams.
‘Now fix a vertex A, If B is any other vertex, ﬁo associate to B
that dam which is crossadXIast in going from A to B, In this way
we pair off the remaining dams with the vertices (except A). Hence
in the "map" produced by the remaining dams, we have

C=1

V=E+1

so that o= ' .
o V"E"’C'z.

Since, as we noted above, the quantity V - E + C,does not change

as the dams are destroyed, it must have been equal to 2 for the

IToxt Provided by ERI
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The Proof of Bulof's Theorem (an example)

At each stage we have V - E + C = 2,
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(6) Note that Lemma 3 (Euler's Theorem) is false if the map
(or system of dams) is not connected, To see this, just compute
a simple example,

(7) It can be shown by analogous reasoning that on the torus

V-E+C=0,
(Hovever here we must make sure that none of the countries stretchcs
all the way round the torus in either directiog.) This result can
then be used to show that any map on the torus éin be colored with
seven colors, Since we have constructed maps on éﬁe torus which
cannot be colored with less than seven coiors, the map-colo%ing
problem on the torus is completely solved.

(8) Euler's formula has many other applications. For
instance, it can be used to prove that there are at most five
regular polyhedra (see below), A variety of puzzles can be
invented to which Euler's Theorem applies, i.e. one shows that
certain configurations are not possible in the plane. See

problems 47-51 in Multicolor Problems (answers on pp. 59-62).

(9) Proof (by Euler's formula) that there are at most five
regular solids, .

Let a regular solid have F faces, E edges, V vertices, with
each face having s edges (and s vertices);and t edges (end t faces;
mecting at each vertex, Place a dot inside each vertex on each
face: AW

6\0
b ol\o

Counting all of the dots, we have

number of dots = Fs = Vt,

175 .
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Now erase theé above dots and place one dot inside each edge on

eachtface,‘ Counting the dots?’L,/

number of dots = Fs = 2B, °
2E
Hence Fe =, Ve 28 .

Substituting in Euler's formula:

2E 2B

V'E*F'—E-de 3-2
$0 B 2
2
and
1 1 1 1 1
I*s " E*T > 7

Noting that s and t must be at least 3, the only possibilities for

s, t which give

1 1 1
R AR 1
are
(a) s=3, t=3
(b) s =3, t=4
(¢c] s=4,t~= 3
(d) s=5,t=3
() s»=3,t=5,
Using
1 {
B = T—TT
tts° 7
and

it is easily seen that (a) - (e) correspond to the known regular.

solids,
This shows that we cannot obtain more regular solids even by

»

allowing curved edges and faces.

170
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Roll Along With Galileo: A Study of Cycloids and Area
" This unit will hopefully develop some intuitive insights into

geometry and can also serve as an introduction to integral calculus.

Further, it ;gﬂintended to give students practice in analy?ing and

predicting pa:terns of wotion,

Materials: Plywood discs, squares, elipses, 'rectangles, and
triangles. Thegse plane figures should be between 6 and
10 inches in diameter, Pastcboards, scissors, and 1/4
ineh graph paper will also be useful.

Procedure: The te;cher may want to proceed as follows:

Galileo .(1564 .~ 1642) was interested in the path of a

point on the rim of a rolling wheel, (Thié path is called

a cycloid.) To get an appreciation for this, drill a hole

in a plywood disc near the edge, put a piece of chalk in

this hole. Now roll the disc along the blackboard, using

the ledge as é‘guide. What kind of path did Galileo

and you discover?

!

[

There are some interesting questions to ask about

the above figure. Suprose the rqdius of the circle

i8 3 inches?

1) How far 1is .it from A to B?

2) How long 1s the path of the point (chalk)?

3) What i1s the area enclosed by the path? .

4) Does the chalk repeat, if you continue rolling

the circle? '
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With a little help students will probably see that the c:lxcle makes

' one complete revolution in going from A to B. Therefore, the distance AB is

merely the circumfererice of the given circle (2ox).
mmmg:estiamarewtsoeasﬂyana»&ed. o get a clue to the
answer of the sawrﬂqwzsdmmmighttrytouseawrdorsmethmgﬂeﬁble.
A piece of copper wire works well. To egtimate this area, cut cut a paste
board circle and the path and weigh the pieces on a sensitive scale. . \

You will probably see that the path length is about four times the
diameter of the given circle, and the area is three times that of the circle.
Oneooulda]souseapast.h)ardci.rcleandapenciltotraceﬂiecycloidona
pieceofl/ﬂinch‘graphpapeﬂc. You oould then count squares to detemine the
area enclosed by the path. |

All of these questions do not have to be cleared up &t the beginning. The
't;eacrercouldqomtoomergmtricfig\mes. Hnnymhavee:q:loredtmother
figures to t.he extent that you desire, you may want to&return to same of the

unanswered guestions. .
Consider the square or rectargle. (The teacher should have plywood

squares and rectangles on hand.) Waat kind of pattern would be formed if you
rolled the rectangle or square aloms the cha‘lj edge?
M .
Does it make any difference where on the perimeter the chalk is placed?

i ' \

ey
{0
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d a .
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(-\fiurc."l
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\awest\déntahavedimeredmdfthepattermﬂntaretcmed.tryto ¥
Adetemdneuaeareasmdw_@mderu\efollowmgpaths -
‘—"f—/—""“‘ — = 7 j—'\'— ‘—""\_. o { ‘
/- . @ \

S B

Bquarewith.the&n]kinthem

thechalkatthenudpm
side

a.
K%

.\' N

» ewe s w

rectangle with the clnazin.tp\e corner

' ' ‘(,/ ‘“ 3 ,
i " N B

o ‘-Wearealsointeresmdinthelengthoftheaediffmt'paﬂw.
Q.xesQions forfurﬂxerdiacusmm

.f Notmgtlatcwegetdiffermtpauuusingtm-qum,dqaﬂuqmwhemﬂe

chalk is p\la.ced, there are tmquesticrm to be asked:
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’

e
.mispathvasgeneratedbyaaqmrewiththectancata ' ’ =
"pomtxd:.stancefrm\ﬂnmnr -

q

- give’ the path lengths: 2"’/4(x+\’x2+92 +V2e - zax+x2 +8-x) =

167 -
8) Where can the chalk be placed s that we cbtain maximm area?
Mininun area? ” |
_B) Where can the chaik be placed to get maximum or minimm path length?
2. Cbvicusly the larger the aircls, square, rectangle, etc. are, the larger
the path of points. Suppose that we have plame figures (circles, rectangles,
t;mql;es) all having the same area. . Which figure produces the largest path?

- The smallest path?

Ifasmnremusedﬁxearmandpathlmgthcmalmysbedetemdned
In germ‘alca fm:ttnareaoonsidathedimsimhelm
o .

|

Cu‘urc.\g"

It is not too difficult to see that the combined avea of the 1
triangles indicated in figwe 5 is 8% To determine the remaining area w8~
note that each of the circular porticns are 1/4 of a circle. Therefore we
can write: | . . |

TT/4 (2 + X 24+ 92 + 202 ~ 2ax + x2 + (5 - %)2)
which simplifies to:m(x2-~ sx + 82). ffymmbstiwtexno,tlﬂsdescribes
thecaaevmereuzeclalkzsinthem,theareaisszwrs?

- »'_Itisalsomttnohudtodetemimthepathlmgthmthegeneral
case. If you refer to figure 5, it is clear that the following formula will .

3
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@

726 +|x2+82 + V2s? - ax +x2)

Again for the square with tha chalk in the corner we have the path
length given below: ‘ “
| w2(s +Vs2 +Zs?) = w/2e(2 +V32)

It is left to the reader to generatc formulas for the other geometric
configurations. , 7 |
‘ Rghrnhagtlediscussimtéﬂncyc]oidarpathof'apoin@mtkerim_
oéaml]irglv&ml,itisinberestingbomtethatﬂnreisno_ea'syméalmlus
vjaytodetetnmﬂ\epathlmgthmﬂﬂuaréamsedhymep&h. To give the ,
reader some idea of how nasty the calculus could be to determine just the area,
consider the derivation below: .

-:*4‘ x| i 1 | i —} -z
¥ T 1§ T 1] LN
* ar ir ‘t-'-' ir\ br

The curve can be described by the two equations x = r(@ -sin

and y = r(l - cose).
-lr ~y
" If we eliminate 6 we can get one equation: x=rcos r "\b.ry-yz.

” We can do the integration necessary on the y axis. Consider the picture below:

\\ m‘

N\ .

Wekxmtl'xattheimiicatadrectangularareaisvzmz, since the x distance of
the whole curve is 27r. By the integration we can find the area of the shaded
portion. Nowifwembtracttheareaofthe‘ahaded'portimfmnﬂxeareaofthe

181 .
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Let's do the integration. Without loss of generality we can let r = 1.

Therefore, we have, using the integration tables,

P
‘,f (~teos™! @~ y)) - \V2y - yAidy = .
(- s 1 -y VI - Q- yA)]- W20y - D\ 2y - y2 + sind @y - 1
=772

Since the area of the rectangle is 2 7, the area of the cycloid is (2w~ #72).2 -
Therefore we can write area of cycloid = 3w .

o _ Q. E. D,
Charlie Haynie has some more elegant proofs for both the path length
and the area. His derivation may also be straight forward enough for some of ..
your good students to camprehend. ‘
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THE EULER § FUNCTION i ‘ <
A SIMPLE INTRODUCTION

Take a sheet of paper and draw a ling the length of it. Place the mmeral
1 at each end of the ling. Subdivide the line and put the numeral 2 at the
midpoint. Subdivide eséh segment again, putting 3 at the midgoint of each new
segment. Contime subdividing, placing at the midpoint of each new segment the
sunoftheembointaoftheseg!mt. Thas after four subdivisions, the original
line should look like : i

See nextpége for a more detailed subdivision.
Question: What do you notice? Possible comments m:lght be:
a. 'I‘hesmallestnewmmbm‘isalvaysnexttothee\dsoftmlire
b‘. 'menunberskeepgetﬁngbigger, a.fteramleanygivenmmberwillstop
coming up.
c. Therea.rei“ odds than evens.
(Each of these camments ‘léalstointeresti.ng observations. For comment a., one-.
might ask, "After three subdivisions, what is the smallest number added to the
line? (4)? How about after five subdivisions? (6)." They will probably be able
to generalize and say that after n subdivisions, the amallest mumber added is
n+l. mesuusmmuntinmtomkémmhave, say, all the 17's,
wehavetoperfamleubduff&ims 'x'neyshouldbeabletocomzmethanselves
that thiswmtbenecessary
cnlmentc.willbetreatedtrieflyinanap?mdix.)
After a while, the comments may start getting more gpecific, such as:
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c. There are a lot of 7's ¢
dw 2nd 11's and 13's.

They or thetead'xe:mig!.: sxxggeattabt:latﬂ:gthenu'berof occurrences
cfdie{lariousinbegers. Fram the lines on the next page, we can det the
following tables (filling in same of the spaces near the end points mentally
b} exploitaticn). ‘

number | frequency nunber | frequency mmber. | frequency
1 2 10 4 19 18

2 1 1 10 20 8

3 2 12 4 21 12

4 2 13 12 2 | 10

5 4 14 6 . 23 | 22

6 2 15 8 | 24 8

7 6 16 8 - 25 20

8 . 17 16 |

9 6 18 |. 6

Once the student has this table, he can begin .to be more specific in his
/> comments: ' ‘
a. Every mmber occurrs an even mumber of times.
b.‘,Ebcceptfor2~ ’
c. Every odd number occurs one less time than itself. 11 cames up 10 times,
13 comes up 12 times, 19 comes up 18 times.
d. But 9 only cames up 6 time& and 15 only comes up 8 times.

% . ,
After mi:rying over this for a.while, they may cate vp with samething equivalent

184.
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e. If a number is prime, it will occur one less time than itself.

Once they've made this conjecture, ask how many 29's they would expect, howmany

37's, how many 103's, *

Perhaps the following cbsarvations would come up:

f. 1}2'is equal to 3x4, and the number of 12's is equal to the rumber of 4's
times the number of 3's. |

g. 20 is equal to 4x5, and the nurber of 20's is equal to the mmber of 4's
times the mumber of 5's.

h. 15 is equal to 3x5, and the number of 15's is equal to the mumber of 3's
times"chemmberofS's.

conjechme:lfammberisﬂwepmdnctoftmcthermnbem,ﬂmthemxw

ofoccurrenceofthef:rstmxrberiseqmltoﬂwprodmtofthemterof
occurrences of the other two.

\i. IZisequaltDZxG,butthenmberof'u's.ismmttnnthenmberof}'s
times the number of 6's.

j. 25 is equal to 5x5, but the muber of 25's is more than the mumber 6f 5's
times the number of 5's.
Aftarsanetine,ttwmtimofrelativeprﬁmssndghtmup.arﬂ

the following modified conjecture might be offered (phrased in different language

perhaps) _

Conjecture; If o=ab, then the number of c's equals the mumber of a's times the

nunber of b's, prdvidedaa?dbhav/ewoamonfag;or. Otherwise, this product

will be less than the mmber of ¢'s. -
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Questions: How many 35's do you think there will be? How many 42's? How
many 70'a? How many 63's. -

T
L,
“p

Now what about mubers that are powers of other nurbers? v (
k. There is one 2, two 4's, four 8's, eight 16's. I bet there will’ be ébct:een
32's and thirty-two 64’'s.
i. But how does this help up figure cut how many 9's or 25'sthsrewﬂ.1} be?

Now inight be a good time to go back to the original line and look at
the actual sume which oocur to give any number. For instzame, we see that 7
occurs six times, in the following combinations: 146, 245, 34, 43, 5+2,
and 6+1. All possible ways of writing 7 as a sum of two numbers actually
appeared. Now lock at a number like 6. This only occurs as 1+5 and 5+1.
The combinations 2+4, 3+3, and 442 do not appear. Let's look at same more

numbers.

9 12 7 S - 16 ,
(148 QHLET (369 QAT S0 &E Gy
(247 2610 646 2412 648 QL3649 214 6410
3+6 349 @?%7 w2 (48 e

@5 B 4+10 & 412 848

Moanbinétimswhichactuallyommtheli:eamcircled. ’
Question: Why do some combinations occur and scme don't? vhat determines | _
whether or not a combination will occur?

There will probably be a number of preliginary camments at this stage:
a. The two numbers can't be the same.
b. You can't have an even number. |
c. That's not so, because the combination 2+$ occurs to give 7, and 2 is even.
d. i;ell, both maxnbers can't be even.
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e. PBoth numbers can't be multiples of three, either.

Samevhere along the line, this will hopefully get generalized to the
following:
Conjecture: Anycanbmati&xinwhichtheubnmhershaveaoamdiviaotwill
not occur. Any cambination in which the two mumbers are relatively prime
(or same such) will occur. | ’
Armed with this conjecture, now, the students have a teclmique which will
pemdtﬂmtbcmmtthemnberofoccmmesofanymasomhlyamunuw.
Use this technique to calculate the number of occurrences in the table on page
1 as a check. Have them compute the mumber of, say, 30's and 42's by this con-
jecuneardou@areuaresultévdthunmsults;fﬂnprwedingmjecm.
Have them compute the mmber of 25's if they haven't made their table that far,
and the mumber of 27's. This will give us a little more data with which to

attach the questions posed at the bottam of the preceding page.

Returrﬁ.ngrtothisq;estimofpowersofmnbars, let's write down what
we know:

-1 2 4 5's 2 3's ard perhaps 6 7's

2 4's 20 25's 6 9's 43 49's

4 8's , ~ 18 21's using the last emjecmre to campute w. |
8 16's

16 32's

1 Fegt= mewmm‘wmﬁé?w‘m‘imn?m How
many 343's (=7%) do you think there will be? How many 121'e7 The pattern
should be clear enough 20 that the class can answer these questions. They are
prcbébly ready now“\i:onake a oconjecture, which, depend.ing on their familiarity
with exponential notation may go saneth:i.n; like -
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Conjecture: If p is a prime, then the number p/will occur |
(e-Lp" "' times.

Question: What if p is not a prime, does the rule still work? For instance, ., °
16=4': Does (4-1)4 give us the number of 16's which occur?

Let's sumarize the rules we have go far.
Rule 1: (Really a special case of rule 2) If p is a prime, then p oocurs p-1 times
Rule 2: A number of the foam p eoccurs (p-1)p” “times.
Rule 3: If c-ab, vhere a and b have no divisors in common, then the number of
occuxrrences of ¢ equals the muber of occurrences of a times the number of oc-
currences of b. c *

Using these rules, wecmmnptedietttenﬁnberofocc\mncesof just
about any number. ' ,
Example: How many 10,000's will there be? Well, 10,000=2"%5". Purther, 2%nd
5% are relat{vely prime. (an interesting digression might be to figure out why
this is e0.) By rule 2, we know that 2*wiu occur eight times, and that 5 *will
occur five hundred times. Therefore, using rule 3, there will be 8x500=4000
occurrences of the number 10,000.

let s gohackarﬂmnimﬂnuoonjecturemuadeonpag%& There
wesaﬂﬂntﬂ1ecanbinatimm+bwilloccur>onlyifamﬂbhavemcamnn
divisors. But if a and b do have a common divisor, then this mmber will also
dividec (why?). Conversely, if a number divides ¢ and a, then this number will
also divide a and b. Our conjecture can then be rephrased in the following way.
Conjecture: Given a number ¢, to find all pairs a,b such that atb=c will occur on
our line, we need only find all mumbers a less than ¢, which are relatively prime
t c. For if a is less than ¢, set b=c-a. mﬂnifaaxﬂcarerelativelyprine,
so are a and b, and the cambination a+b will ocour.

¢
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Corollary: The muber of times that ¢ will occur on our line is equal to the \
nunber of numbers less than ¢ which are realti{rely prime to ¢. This gives us an

even nore efficient technique for writing down all combinations giving c which

will‘ occur., .
Remark: The number of integer, than a given integer and relatively prime to
it is very impartant in number , and the associated function has a special

name: the Buler p~function, and is defined as follows; given an integer ¢,

+€)= mmber of integers less than t and relatively prime to c.
Let's lock at the conjecture on page 4&9gain.b Can we prove it? We can
break%it down into the following two statements: ~ |
1. No matter how many subdivisions we make, any two adjacent n will
always be relatively prime. "\ l_
2. If c=atb, ard a.and b are relatively prime, then after a suitable number
of subdivisions, the mmbers a and b will be adjacent saewhere on the
line. Equivalently, we can phrase this in the following supi'is:ing
fashicn: given any two relatively prime mmmbers, they will occur side
by side at some time (i.e., after a suitable number of subdivisiong)-
sanewhere on the line. (why is this equivalent?)

Congider statement 1 first: After two ivisions we have the following
situation: .
i | 3 2 3
> 4 ' Ao

Statenmtliscertai:uytmeinthiscase.

After three subdivisions, we have:
! « 5 e a ¥ 3 o« !

kit - -~

and again statement 1 is true.

[+]
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. Can we prove that if statement 1 is true after so mam subdivisions, then
it w1ll be true after the next subdivision? Sure. Suppose after n subdivisions
wenave...ab...bei:qtmadjagentmnberaaum\eremtmuné. Tnen after
the next subdivision, the situation looks like ... a atb b ... . Ifé‘andbare

relatively przme; then 50 are a ana a+h, as well as b and a+b; i.e., adjacent

" numbers are still relatively prime.

Statement 2 carAxbe demonstrated by a simlar inductive argument. The anly
way of wrating 3 is 1+2. We see that the pumbers 1 and 2 are adjacent after
the first lst subdivigion. 'I‘nemlymyo.fwrithxg4h1+3."memnbersla‘m
3 are agjacent after the second subdivision. S5 can be written as .|.+4. 243,
3+2, a+l. 3and2areadjacentaf1:ertm2mmbdivisim, 4am1areadjacem:
after the third, etc.

Now suppose we have established in ecme fashion that statement 2 holas
for c=2,3 ....out to some number n. Can we show that it-.'rmstbe true for o=n+l?
\For instance, suppose we know that the statement 1s true far o=2,3 .....15.

Can we prove that it is true far o»16? Let's see. Take the case 16=13+3.
Can we prove that after a suitable mumber ot wbdivisima that the numbers

. 13 and™3 will be adjacent? Sure. By our assutption, statement 2 holds for

c=13. In particuhr, since 13=10+:1, after a suitable manber of subdivisions,
the mmbers 10 and 3 must have been adjacent, i.e., somewhere on the line it looked
like ... 10 3 ... . Mt&rthenextsubdwism,um thispartofthelimde

look like ... 1013 3 ...f i.e., 13 and 3 are adjacent, which we wanted to show.
Statament 2 can be proved by rigorous induction with a little more work, but.

there is not much point. in doing it in class. With suitable buildup, a
classmightwellbeabletoprodweandfcliwﬂrreuqﬁmsketc@dmt.

oo )




APPBDIX
>

Coment ¢ on page 1 leads into some interesting channels that have little
torbwiﬂ:tlnmtofuﬂlmt.mtmichuighthamhdupimomﬁm
mumsﬂminﬂniramriqlt,

mmnmwammmw-ummmmmu. A
‘o many more ? A check reveals that after each subdivision thero are aluost exactly

wice as many odds as evens. Ammmamfulmwtnml,um

3mm.ﬁatﬂup¢mo£ddsmmhmyw,ﬂﬁ
ftor every subdivision we ssem to have the following patters:

little checking will show that this pattern is indeed self-reproducing, )
nd that 1f we put between every tio lettars the-parity of their sm, we will
atblckaxactlytt?mpnttcn. There will always h.udoaunmyoddnaﬁ
vens.

mthm-mmmummunmﬂdm Are there othar
eproducing patterns? Doss every repetition of the interpolation process?

For instance, the pattem ...KE EEPEEEEEFE... is obviously self-reproducing,
rile the pattern .. 00000000... locks 1ike ,..OECECECEQE ... after ons
tterpolation, and liks ... COBOGECOEOCECOE ... after a sscond interpolation.
ahmmtthupmiupunuw. mp.i:mn'...oooooooomm"
. croids the E's to the right with sucoessive interpolations and tends to look
re and more like ... OOHDOEOCEOCK... mmpatmnltudmdtlﬁlcm?
'Mo:mmmgmmmmmmmn.mt
pens if we replace the ariginal pattern by the pattern obtained from
ming every two adjacent smbole? The fatter ...EENEEERR.... is still

-
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fixeu, and 80 is ... OOHODEOOKDOEOOE... . The pattern ...00000C0.....

oW goes t0 ... MEERMMMEE... .’ after one application of the rule. The pattern
#ith sacosssive aslications of tie rule. . '

Can you think of other interesting patterns? Can you think of other
interesting transformation rules to use? Intlnappaﬂixtovﬂnemutm
Fibonacci manbers handed out a couple of days ago, we were concerned with
patterns like OOUDUOOLUO, Iavkgmmtia;vd.thoalcrcvmhmm.
Can all tnis playing with patterns be generalized scmehow?

- ©

o
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FOUR SH0RT IMVESTIGATIONS USING ARRAYS OF SQUARES
‘ Y | AND CUBRS: ) '
A STUDY OF PATTE.NS IN WUMBER SEQUENCES
. o p

dote: mm-'wmhmm'mﬂmmtm'
tmume'tmvmumtimlbnimhm hmumtivootthmgl\hich
mhdmmwmafﬂnmx lb)iwt,mup.ctaa
discoveries by stulents are especially to be encouraged and the teachers'
supplement ahould be continually enlarged to include these new potential

'mo
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AShott Investigation: O Squares in Arrays of Squares : o
. IR
4 I
. (pnﬂzl " (1) Given the figure at left, how
_ many different squares® cgn you
j{?}f . gee? Do not look mow, but at the
§f ' Iﬁ?—L ' » '(;ﬁk bottom of the page the amswer 1s
: V given to check yourself.®*
[ ) 4x4
e -
@mﬂmewan?: o 3x3 ;
X2 ,'_— ..———-}———-— -
‘ i
<o ] ! \
= _’_} i — -
'_@J | 1t | |
\
(2) Can you tell the number of different squares* to expect<gnm each? ...~/ ‘
(3) Suppose you have a 5 x § array, can you predict’ the number of .
squares in this? Check your prediction by an actuhl count.
(4)

Now predict the mumber of squares in a 6 x 6 array. And for a

10 x 10 array? What ig the pattern? Can you give a formula

. N
to describe this. pattern? '

*ifferent squares may be interpreted to mean squares that include at

least one square not in another square., Other interpretations of

different squares will lead to different, but interesting results.

**It 1s possible to see forty different squares 1nc1uding ten which are
shaded.
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Sﬁgrt Investigation: 60 CUgée in Arrays of Cubes

(4

¢ Note: This investigation builds an iﬂéight developed in SI-1. ‘

Consider this series of arrays of cubes: ’ / //i

/ = T
O i P 1

1x1xl & ]
| ~mwr ) ITATNR .
’ : | Ix3x3 ,
P S _ o

(1) Can you tell the number of different cubes that can be distinguished

in éach arxay?

[ ] £

(2) Suppose you have a 4 x4 x4 artay,'can'you predict the number of

K cubes in 1t? Check your prediction and ex n how you .counted
the number of xubes in the 4 x 4 x 4 array.

(3) Now predict the number of cubes in a4 8 x 8 x 8 array. What '1s
. (2]

the pattern? Can you give a formula to déscribe this pattern?

N T
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“ Short Investigationm: OO0 Recténglea in Arrays of §quares
;o " L . ~\
Conpider these arrays of squares:
- s ’ ("‘\ y ’ .
d ‘ . ‘ | |
. . " - ' - ‘ ’ ¢
Ix1 N
2x2 . .
3x3 ]l .
) - 1 E - 4x4
\

(1) Car you tell the number of/tectanéiee (including squares) that

3 you can see in eacl of the frrays? °

(2) Suppose you have a, 5 x 5 array, can you-predict thg number of

rectéﬂgles in thia?
/1

. ‘ N

(3) NoQ,pfediét the nimber of rectangles in a 7 x 7 array. What is
the pattern?. Can you give a formula for the, number of rectangles

o

in any nth array {(an n x n square arrayﬁbf squares)?

- 196
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Short Ianvestigation: 00 Parallelopipeds in Arrays of Cubes~-

/

Note: A collection of on¢ inch multi-colored cubes which may be used
i

to physically coustruct cube arrays of cuﬁes will ‘be helpful.

Conolder these arrays ofi, cubes: .

7 J
/ X
. . .
.
. O
B

[
;;/i’

IO N R

¥
N

‘<: \\ -

N

1xlxl 2%2%2 3x3x3 )

(1) Can you tell the nuﬁber of different parallelopipeds, N,
’//,(1nbluding cubes) that can be distinguished in each array? .

(2) How many batalielopipede ina 4 x 4 x 4 ar;df; What 1s the

b pattern?” Can you gilve a formula to give the number parélleIOpipeds

in any nth array?

™

: ,
* A/parallelopiped is a kind of "Three dimensional rectangle". It 1s
a|threeldimensional figure whose f?ces are reectangles,

. -
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Outcomes: Teacher's Supplement to questigatioﬂ of Arra&s

)

of Squares and Cubes

Note: The difficulty bf the ‘Short Imnvestigations 18 suggested by
tﬁe stars ptéceeding each title as follows: O A Challenge, E
60 Difiicult, and 0G0 A Brain Buster ‘
Short Iﬁveatigétian Discussion: Squares in Arrays of Squarcs
(1) Im the given array 1tlie possible to sce: 16 1 x 1 squares;
9 2 x 2 squares; 4 3 x 3 squares and 1 4 x 4 square plus 10
shaded squares for a total of 40 different squares.
(2) The total mmber of squares that can be seen, N, 1n each of the
arrays 1: 1x 1, N=13; 2x 2, N=5; 3x 3, N= 145 ond 4 x 4, N = 30.
(3) The sequencéll, 5, 14, 30 has the differend between successive
pairs of terms b, 9,1&6. The. next member of this difference
sequence Qould apparently be 25 suggesting that the next mémber
of the original sequence be 30 + 25 or 55.
An actual count of the squares in a 5 x 5 array verifies this.
4) A prediction for a 6 x 6 array would be 55 + 36 = 91. A prediction

&

for al0x 10 array 48 2 "2 2 2 2 2 2 2 2

2‘\
1+2+3+£.+5+6+7+8+9+1ﬁ9‘*j

rd

=1+ 4+ 916+ 25+ 36+ 49 + 64 + 81 + 100 = 385

. A generalized formula N = [ Number of Squares 2 2 2 2 2
can see in n x n array| 1 +2 +3 +,..(n~1) 4n
of squares =

Ed

EBiq‘ ? 20(11
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" This 18 a "recursive formula” which essentially requires the amswer
to the (n-1) x (a~1) array beforg finding the answer to the n x-m areay.
However, it is possible to express N in terms of n in a "discrusive

formula" that.gives the value of N direetly when a value for N replaces
N. This 1g: N = —B) ‘(“"2) (2ut1)

. This formula may be obtained
from the scquence of values of N by using the method of fimite

differences. ’

Short fﬁvestigation Discussion: Cubes in Arrays of Cubes

(1) In the 1 x 1 x 1 array 1 i
In the 2 x 2 x 2 array 9 ..
U )
In the 3 x 3 x 3 array 36 ‘ 4 <

(2) Im a4 x4 x 4 array, there will be 64 1 x 1 x 1 cubes, 27 2 x 2 x 2

cubes, 8 3 x 3 x 3 cubes and 1 4 x 4 x 4 cube to yleld a total of

100 different cubeg.

(3) ‘A prediction forJthe_S z 8 x 8 arrag is:
3 3 3 3 3 3 3
1+42 +3 +4 5 +6 +7 +°8 = 1296.

The pattern is th&t,~when the length of a side of the array of cubes

increases from n to (otl), the number of cubes that can be seen

‘ 3
increases by (ot+l) .
T~

fgécher'guﬁgpplemeqs_594Igygg;igatiogﬁgﬁfArrays (Cont'd)

Thus N = Number of cubea/that can be .
seen in a n X n X n array 3 3 3 3 3
of cuktes =1 +2 +3 +4 + ... +n

. This 18 a recursive f@fmu%a. It is intereating to look at the sequence

of N for which we have 1, 9, 3§;¢;QA?... We may recognize that this i)

18 2 2 2 2 ’ ,
i, 3, 6, 10 .., which 18- sequence of squares of the tm}amgle numbers 1,3,6,

4
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)

15 ... (these arec the asuccessivd partial sums of the eounting numbers).

. Since the mth triangular mmber 18 given by the expression AR 2“*1
we have the discursive formula for the nunber of ecubes secn in an array,
N = mgﬁ+122 '
2 o

Shortllﬁweatigatiam Discussion: Rectangles in Arrays of Squares

(1) The oumber of differemt rectangles that cam be distinguished, N,
in the sequence of arrays is 1 x 1, i = 1; 2 x ZikﬁS- 9; 3 x 3, N = 363
4 x &, N= 100 '

-

an exsmple of the mode of analysis;.let us consider the count of the

number of rectangles in the 3 x 3 array of squares,

X 2 2 2 ‘
There would be the squares which mumber 1 + 2 + 3 = 14 and in addition

' there would be 1 x 2 rectangles §
, 1x 3 rectangles 3
2 x 1 rectangles 6
3 x 1 rectangles 3 -/
‘2 x 3 rectangles 2

Ix 2 rectangles 2
36

(2) In.a 35 x 5 array of squares we would predict the next in the sequence
1, 9, 36, 100 ... This sequence may be recognized as the éequence of

squares of triangular numbers which ocecurred in SI-2 and thus the

next term squared which is 225,

o 20.. ’




(3) The nu?ber of.rectanglea predicted in a 7 x 7 array of squares 2
would be the seventh ttiangu{at‘number, 28 = (1+2+43 + b+5+6+7),
squared whiéh is 784, ™

The pattern is that tée number of rectangles, N, in any nth of

square arrays of squares is the nth triangular number squared. And

the formula for thist
. Nw

(n) (notl B . >
2
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The Tower of Hamoi Puzzle~-and Variations: Questions

€V

(2)

(3)
(4)

(5)

Using a regular tower puzzle, what 18 €he mi;imum number of moves
to putting a larger disk on a smaller ome? ‘

Starting with a pille on any number of disks altermatisg im color,
pay greém ond b;own, what do you fipd if you restack the disks im
two piles om two other posts so that tﬁe piles are all ‘greeam

or all brown? . d

Part (1) again gut with four posts,

T%y'parm (1) again but with six posts. How many moves for say
100 disks? | \ :
Ery part (2) again. Here juat gepdtate into two pilee, one green,
the other brown. (One colpr may be stacked on the peg om which
the stack originated) -

In each case find the minimum number of moves and write a formula

that will yield this,

J

4

.




Tower of Hanol -~ and Intereéting\VanGEioné: Discussion

(1)

192

Ay

: 7 . L Vd .. .
Students find this Tower of Hanol game quite interesting and,
f .f’ .

in fact, make as an-additional feature the speed element of

A} . g

moving a given numbefybf pegs. I recommend that six %gﬂmore
games be made available to the class several weeks before

) _— '
bringing up the following topics. This will enable the

students to learn how the’ game 1s pla?ed before aékihg fhe

mathematical question. "
In the standar& édme of Tower of Hanoi, usin% the ié;'wh;ch

accompany th;!game, how many moves- are required ;o movefgpe discs

from one peg to another? Can youigenera;;ze to n_pegs? In

those classes where back ground ié sufficient, the formula for

the number of moves can be‘provéd by mathematical induction.

)

‘Many times students will arrive at the proof with no help from

the teacher, ) o 1

i
%

Shall we try it? How many moves if you start with

1 disc ;;

2 discs 3

3 discs 7

4 discs 15 .
@

5 discs ?

N

.

PV, 200 .
o
.

N\
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. Perhgps someone will consider .the following.

I
Fy
o ] — o
. . \
To solve 5 I must first move four discs to a single peg (15 moves),

/

then move the gifth dise to the correct peg, and now mwy problem 18 to
move four again (15 moves again)

154+ 1+ 15 = 31 ' »

e

Any conjecture--- ' i 3

n discs require 2® - 1 moves or n discs require twice the number/of moves

- required for (n-1) discs + 1, {i.e., n discs requires 2(2“"1 = 1) + 1 moves.

. (2) Using alternating(colors starting with any number of discs on one peg,
vhat is the minimum number of moves required to separate the colors

into two stacks of descending size on the other two pegs?

No, of discs ) No. of moves
1l 1
- 2 2
] \ 3’ 5
4 ?
5 ) .
10 731 -

v

Tﬁé‘ﬁééﬁnique for getting the expression for n moves 1s to

to use Part (1) for help in'solving the new question. For example,

for n discs

P
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O

[N

This move requires (2

_ 1

ih .
at ==

1 1 — _ | ) | 4 J

o=l 1) + 1 moves or 21 moves L2

.

This move requires 223 4 1 or 293 moves,

Conjecture: n moves require
' e ek R T +\2\i'7 + voo + (2! or 2°) depending on whether
n is even or odd. If n 18 even the last temm is 20; if n 18 odd, the

¢

last term 1is 21.
(3) Using the original rules, but adding one more peg (making four) what is
the minimum number of moves required to stack n pegs?

The following bookkeeping might aid 1nd%hia question,

No, moves No. moves
No. of discs 3 pegs 4 pegs
© 1 1 1
2 3 3
3 ( 7 5
4 15 9
!
' 5 31 13
6 63 ) 17
i
7 ? L x
T
8 I ? ' ?
y LS

20
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. & °
c . N o ) o
onjecture: ‘
2 x for 7 will be the minimum éalculation from the followigg: .
7=443; 2(9) + 7, or 2(5) + 15
7542 2013)+ 3, or 2(3) + 31
7=6+1; 2(17) + 3, or 2(1) + 63 ,
. / p
T

(4) and (5) are not discussed in order to whet your awn creat ﬁ#ty; , 4>£é
. (;1‘ b ; / . v {7 )
however, E 1s nice if worked before B and then used in the solution for /-
2). . '
. ] 0
:')
= 0
v
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Short Inveétigations: Peg Puzzles, Patterns and Equivalence Classes

l

Inveacigationg Btarting with the Triagngle and other Peg Type Puzzles -
A\ . . 0
1, Uaing a triangle puzzle of the type
that has pegs in a peg board ~- .

a) Start with one empty space in one corner.

b) Make jumps without removing the peg jumped. *

c) Get a vacancy in each of the places.

d) How many unique starting places are there?
e) How many vacancies. are aaeociated with each starting place? . o
£) What do you get for the next size triangle? etec.

g) Generalize for a triangle with n rows.

2. Using the square peg board, or any other peg board, such as the

following: ' N

-
-
> o o o0

P e w -
e w e - o

N

a) Try the same problem with any of the peg boards.

b) Generalize to an n x m or n x n,

a) Goxon to.cubes (it helps to use colored cube blocks here).
b) Generalize for n-dimensional cubes.
4, Try tetrahedrons. ,
5. It might be interesting to have students make a random type , ¥

peg board, and answer the same type of questions as above,

6. How many different jumps are possible on the triangle puzzle?

(There might be several interpretations of this question.)
0 ,

Elﬁl(; | 205 - -
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.SPIROGRAPIIS & GCD'S

Something to try with the Spirograph (Renner #401)
s v

Take two plastic gear wheels from the Spirogra?h set, say the
#40 and #48, pin one of them down on some paper on top of cardboard
and move the other wheel around it with a pen in one of the ﬁoles.
Caréfully note ygur starting point;w/Then switch the wheels, see what

happens! R e
/

Use this line

to help count
the number of

/ times the
' wheel went
around.
\]
$

Let x = the no. of times the Let y = the no., of times the no.
no. 40 wheel goes around the ) 48 wheel goes around the no. 40
no., 48 wheel. 40/x = ? wheel. 48/y = ?

Any conclusions? .

Try this activity with some other .Spirograph wheels. Pick any two;
what do you think will happen? Can you predict beforehand how many times
e

one wheel will go around the other?

How many times will the #24 wheel go around the #36 wheel?

@
How many times will the #36'wheel go around the #24 wheel?
How many times will #45 go around #75, and vice versa?
How many times wil #40 go around #80, and vice versa? 2 XY

 Not so easy: How wany times will the #63 go around #64, etc.?

Q
IC Do you think you can make up a theory or an explanation of how this works?

A ruiToxt provided by ER
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Short Inveptigation: The Box Probleh
N
In place of the letters belyow place the numbers 1-12 in such a
way that the sum of the numbers’ in each box is the same and greater

'u;haﬁ 15.
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“

Short Investigation: One Huundred Dore-

ook at the circle of dots, below, and imagine that you had to drew

all toe possible lines (straight) between them. How many lines would that be?

Problean:

Proolem

Problam

(2]

Pronlem:

Szxgaogeﬂxecimlemdloddotson{.t,insteadcfﬂnbenabove'
now many lines would that be connecting all the dots? ‘
Suppose, instead of looking at the straight lines drawn between

the dots, you ocounted all the different triarglesyougouﬁimke.
using these dots as vertices, how many would that be? (You can first
look at the case where there are ten dots; and then if you think you
are really good at this, look at the case where there are one hundred
dots on the circle.)

Same “idea as above, but now you want to count all tHe quadrilaterals
(fir sided figures) with vertices anong the dots. ¢
Vbulditnakeanydiffe:‘amz-eifttecbtsmremtonaperfeet
circle; maybe an auipse (a slightly,squashed circle)? Try
putting the dots (ten, say)mdifferentkindsofj boundaries, and

see what happens to the answer.

Rlz




Short Investigation: . Squares, Cibed and Averages

. , .
pacti Griffith, a teenager friend of mine that has been in dur class on

' seve;ral@ccaemns @mehadaprobj.aninmmt@cb "It involved squaring

various mmbarsz R
2 2 2
5 w25, 6 = 36, 7 = 49, etc,

4

I'criedt@confusekm.aftershehad@ttenszmﬂf,andmsabouttdget
6z,oyremndjmghertnat6vas e "average” of 5 and 7. Arﬂthatmybe
tnat.mu]nglveheraqm,ckmytogettmaquareofsix Sl'eleaped&tﬂie
“clue”. ’I‘hen,allIlaveﬂdoisavarageZSandM,degetﬁ % 25 + 49
= 74, 74/2 = 37. vbopsl Unt happened?
Wydmw'tyoupiéksevaralamtpmsaxﬂseewhathappms,ifyoue?/ﬂ\is
"short cut method". Given: /82-64and102=100, whatisgz? N

2 2 2 .
Given: 11 =121, 13 = 169, what is 12 ? Make up some examples of your own.

maacnappensmenmefirstmnmbem“tmmesmumllsquare aremt
two units apart? Suppose you were given: 92 = 81 and 13 = 169, what is 1].2 ?
(I have pickea them further than two apart, and so that the average is still
a whole number. It gets more confusing with fractions. Right?)

: 2 2 2 2
Smposeyopweregivm:?nﬁamdlSszzs.M\atisll ?20R: 2 = 4, and
142=l96, whatissz?

213
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a 4 N

. 1 L.
Is tlere any pattern to this equ}ar.’m; and averaging business? Can you ar

{

A

kY 4

. .

foriulate any rule? e
: 53

Problem: What about cubing? Does the averaging methodmrk for cubing? '

Iry it and see. Maketésmesystanﬁorcubing‘w. ?

/
Problem: What about square roots, Jdoes the averaging method work there?
& ‘
Pr@blang What about the problem of multiplying a number by seven: does
) M .

tue averaging method work there? Givem: 17 x 7 = 119; and 15 x 7 = 105,
what 18 16 x 7 %'#P7? (Or & similar problem.) !

‘;{» ) o] . p
M
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Short Investigations: An Array ef Triangles
J
& ’ 3 ‘ »
1. now wany triangles can you seg in the array of triangles below?

<

<. g-uOw. nany trapezoids can-you see?

3. uow many line segments can you see? ' -
N . v :

4. 1ow nany parallelograms can ydu see?

5. now many dots can you see

. Low many regular hexagons?
. . ’ 2
7./ Can you predict how many of each type of geametric figure you would have

. ~
for di.ferent size arrays?

e

N - -

‘ 215
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Investigationo witb 3 Dimensional Tic-Tac-Toe Games
1, How to play 3-D Tic-Tac-Toe \

\ .
The ﬁeat commercial game is Parker Brothers®' Qubic. It consists of

four platfoéms, one above the other, each of which has four rows of‘fbur

ocpaces.
*

The object of the game ig to got four chips im a

row just ag playersc in regular (2=D) tic-tac-toe

olololo try to get three im a row. There are many ways

X to win., Four im a row, 4 in & diagonal, through

‘all four plat forms 4 in a column, a main diagomnal.

\ ) Try them out and see., Play the game a few times.

' ) 2. Investigation. How many different waye are there to win? Try finding

@

~ them on tne gome,
4

‘é:, Invegtigation. What ig the greatest number of chips of a ainglé

~

color you can place in the game without getting
four in a line? It must be greater tham or equal
Yo to 27; do you know why? Can you find a number

2 ) \ s
which it 1is EIQ@rly legs than or equal to?

. \
4, Why is the ga?elé % 4 x 4?7 Why is it not 3 x 3 x 3?

We might try a different question. Remember ordinary tic-taec-<toe;

it k@jﬂ x 3

Y
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and you must get 3 %9 a8 line in order to'win. Try ?laying a2 x 2
game of two dimemnsional tic-tac-toe. )

'l

+

How many im a line would be required to win? "Who wins? Can you work
out a otrategy? Which is botter the 2 x 2 or 3 x 3 game. Why?
Now try playing the 3 dimensional game as 3‘3 x 3 x 3 instead of
4 % 4 x4, Revove one of the platforms and lay paper strips to cover

-over an cutside row and column on each platform.

Now try playing the game with someone.

How many in a row are needed to win? Who

//-()/f

wing? Can you work out a strategy?

AVavd

Which do you think ig better the 3 x 3 x 3

or 4 x 4 x 4 game?

What can you infer about the length of a side of a game with respect

to the dimension of the game? Could there be a one—dimenéionél game?

Why?

5. Look at The Top Platform. It forms a plane. On that plane you havé
columné, rowa, and diagonals of 4 spaces. How many moEE»planes equivalent
to that plane can you.fihd?

+

6. Could you play a 3 dimensional tic-tac-toe in 2 dimensions, i.e., on a

flat piece of paper? Tr& projecting the game on to the paper and then 7
piaying itc. , ’ //
b
L '
~bottom or 1st 2nd 3rd 4th or top
platform

,Eﬁﬁbg« ‘ 221 ¢
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Is it easier or harder to play this way? Can you tell if spmeone has won?
7a) Suppose now we describe the game with a coordimate system.

There are four platforms im the geme., Let us look at the bottom

or first platform.

.Starting in the upper left cormer, let

1 2 35§2K uc label the spaces horizontally 1,
1 r 2, 39 4 jusct as we might om the x-axio
2 in Cartegian coerdinates. Then label
N2 the gpaces down 1, 2, 3, 4. Each
z

platfoxm, too, would have a number
counting from the bottom upward

i, 2, 3, 4 (y-axis). Then every

point would have a coordinate (x, v, z).

rd

There is no need to impose "x, y, 2" on the students. A better
approach would be gimply to ask them fc make up a coordinate gystem of
tﬁeir own go that they couldAescribe the position of any chip just

by giving just 3 numbers. Maybe they would come up with A, B, C or

more likely R,C,L; Row, Column, Level. 4

A,
i
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1/4 .
7b) Once some kind of descriptive coordinates can be agreed upon,

the inf:eresting mathematics begins. - i

y, Practice putting chips at ;rarying' 'pla es in the gam\ﬁ' and
\y-letting students'determin; the coordinates.

‘Now"g:l.ve them t:tye coordinatds for four chips am‘i" ask if they* Ak

can decide whether or not it :I.s'a' winning combinat:fl.on.

For example in the R, C, L System:

-

& ‘1) Is (1, 1, 1,), , 1, 2), (1, 1, 3), (1, 1, &)

a winner? ’ ‘

©

2) How about:'(l, 1, 4), (_2, 2, 3), (3’ 3’ 2)4’ '(4’ l" 1) ?

3) '1Is a1, 2, 3), (@, 3, 4), 4, 3, 2), 3, 2, 1)

a winner?

@ | 4) (1’ 1, 1)’ (2’ 2, 2)’ (3’.3’ 3)’ (4, 4, 4) ' ""“.\f\

What about this?

s
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Some interesting generalizations can be made zbout winning

ﬂ

combinations and the patterns of the numbers in the coordinates.

R

A good way to analyze these 1s to "stack” the coordinates., i.e.,

1) 1, 1, 1, 2) 1, 1, 4 3) 1, 2, 3 4) 1, 1,
o i . ‘li -
1,.1, 2 2, 2, 3 2, 3, & 2, 2,
1,1, 3 3,3, 2 . 4, 3, 2 3, 3,
1, 1, 4 4y 4, 1 - 3, 2,1 4, &,

Try writing dow; as many of the winning combinations ip this way
as you can, (Note: not all’of the sets of coordinates given above
are winners). Keep doing this until you see some patterns. If you
can generalize and make up gome theoreﬁs, do so. Then test
them and see if you can find any counter examples. The proofs
for some of the theorems you can make up from this exercise are

not hard. Try proving your theorems.

><<} P ' :
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Short Investigations;: The Handcuffed Prisoners
2
pnce upon a time there were nine prisoners-of particularly dangerous
cnaracter who had to carefully watched. Every weekday they were taken -
out for exercise, handduffed together, as shown in the sketch below. On

no one day in any-one week were the same two men to be handcuffed together. It

will be seen below how they were sent out on Morday. Can you arrange
the men in three's for the ramaining five days?
\ .
It will be seen that number 1 cannot be handcuffed to number 2

ﬂéﬁeither side), hor number 2 with number 3, but, of course, rmumber 1

and number 3 can be put together.

9
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Short Investigations: Bees, Rabbits, and One-Way Streets

A. L-biol-o-Che , :

T It is biologically true that a drone has only one parent, a queen; whereas

_ a gueen bee has two parents, a queen and a drone. Given a particular drone,

how .any ancestors did he have in the seventh generation back? What is the
' th .
nunber of ancestors in the n  generation back? What is the total number of

ancestors for the previous n generations.

B. The Fibonacci Rabbit Problem:

You put a mated pair of newly born rabbits into a cage and leave them —-
feeuiny them, of course --— for a year. When you return, how many rabbits are

there? -~

The facts avolt rabpits are: It takes two months fram the birth of a
mated pair of rabbits to the time that they produce their first litter.' Every
litter is exactly one mated pair.

<~ E>

produce a litter every month.

Aftér the first litter, parent rakbits

Can you now compute how many rabbits there will be in the cage at the. end
of one year -————365 days, to be precise?

C. A ®ne-Way Street Problem:

Suppose that a City has the following streets, where the arrows along
each strect represent the single direction you rmust follow when driving along

that street: a - s -
f - L . L

\ \ KA (A o
22.: \\j

d—

~

. ’ - ’ -,
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One pata you might take to get fI'OIi(I start "S" to final position "K" might be:
S=i=C-L-F-G-I-J-K. And, there are many‘others. How many?

Problaa: “How‘n{any different routes are there from S to K, consistent wit_h the
strect dircctions? e ‘ *
Suppose the wap was extended Eso that five more square blocks were added. to

the city's boundaries — roughly doublincj the size of the city — what then?

225 , o
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A .
N

Short Investigation: Kongisberg Bridges

o

Th?.re is a famous "Konigsberg Bridge" problem that set mathematicians off

creating the impdrtant field of mathematics called "Topology". Here it is:
L3

Problem: If you lived in Konigsberg, could you take a wlaking tour of the
city and cross each of the seven bridges exactly once? Try it.

- am e E3 KR N ar e R em MR MR R Em e Cm A O em es Me we e S GR 3 e C©3 o em S3 o3 A2 OB we am wm eam e e

Here are same other “"cities" with their bridgeg. See if the tours are possible.

- ,,/‘f‘",,_'/:f/\ e /:/7
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MAKE UP "CITIES" OF YOUR OWN AND g \ { !
i

PUT IN BRIDGES D,
3Problem: Can you explain why, for sameccities, there are tours, and for other
cities there are not? Do you have any theaory?
Problem: Are same of these maps really "the same"?
Problem: What is there about a city map that is es:;ential , and what is regally

not important (as to whether there is or is not a tour)?

225 . l
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Short Invegtigations: Tree Grapha’ >
. ter
Note: Tinker Toy or similar knob and dowel toys may provide helpful
modelo in the invegtigations below,
There are some opecial "graphg" called 'trce graphs". First,
gome definitiona:
A Graph: 1o a picture containing some points, and where
some of the points are joined by lines, (net
necessarily straight; and they can cross and it

does not matter.)

A Tree Graph: is a graph in which there are no cycles, that is

connected.,
A _Cycle: in a graph, is a seriesg o?~5oints and lines that
connect in a loop.

Some examples:
— ~
S S 0 5 U N

(B) () : (D) - (E)

Which ones of the above graphs contain cycles?

4F)
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(Connected: means that any two points are conneéted by a series
of lines.) Are all these pictures grapha{~ How many
of them are tree graphs? Can you find cycles in
any of them? Isg "F'" a graph? Make up some pictures
that are graphs, of your own and gee whether they are‘

actually tree graphsg?

’

/
Tree Graphs: <

e

Mathematicians ptudy tree graphs as a special kind of graph. They
look at all the "different" tree graphs one can make with a specific
number of points in each graph. Tor example, here are all the tree

, graphs you can make with just four points:

Are thege different? * & o o - ¢

L r‘.[
It all hangs on how you want to define the word "Different". How?
Problem: How many "different" tree graphs can you make with 6 points?

ten points? etc.

Problem: How many graphs can you make with three points? Five points?

100 points?

227
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Short Investigations: Friaundship Diagrams '

. I have a group ofcfriﬂ'ds, (let'scallthe;n, M. A; Me. B; Ix. C; ete. for

tue sahe of argument), and I can relaté the various friendships that exist amng

toan. A knows B; BlmwsCaﬁdD'—vanhweacbeum,asmuz and D

knows ki G knows F and H. Got that? | . L
how mach wore straiqhtfurvmdandeuﬂycamhaﬂedmﬂditbeul

could firnd a way to make a diagram that exhibits these friendships visually!

See if you tuink the diagram below does the job. | ’

o
>—

(Oops, I forgot to tell which points refer to which people: Can you & that?)
ofcmmse,mpeoplemakediagmnsomvay,ma{nﬂsn Here are scveral
\\\cum'frieﬁshipﬁagrm'ﬂatmmaedwmasmt&amgggcf
fricndships among Hr. A, thru Mr. H. Do you agree that they all do that?

e
L 4 ..'

\ ,,,Q\'J\\'-/

Can you explain why they do, or why they don't?

Broblem; Iamgoin;togiveafrierﬂshipdiagr’anforagrmpofmm 0x. A
airu i. i), and tien a friendship diagram for a group of women !iss M thru
4iss 7) and your job will be to marry them offl _But, with the proviso that
if two men know each other, their wives would too, and vice versa. Can you do

Q

. 228
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Short Investigations: Hetworks

(uﬁdsisasart@ffolm&amﬁoursoritcmstaxﬂaluse.)
At the bottom of this sheet are many "networks,” composed of lines and points.
F@reachofﬂnnétmrks.g&if@mtmoewerthenetwrkh;Ma
way that.you cover each line exactly once. (no more, no less.) Ietuscall
such networks "traceable"; the others, "non-traceable". See which of t! ‘
mmksamtra@eablamdwﬁchmnarmble.amymmmx:;f‘f
vwiy sane are and some are not traceable? It may be useful to divide the
traceable networks into those for which the pencil path can begin at any
point in the network, and those for which there are a restricted group of
points at which you must start (and end). See if that, ar other ideas you may
nave, tnlpyouto:tadictvhymanatmrksare!zmblemﬂoﬂmammt;

1' o

4

-
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INTERESTING QUESTIONS FOR EXPLANATION

- . -

7

1. On a 3D Tic-Tac~Toe measuring 3 x 3 x 3, what is the most mmber
of counters that you can put down without having any two lie on the same
gtraight line? Is there a unique solution?

1 have found two different ways of placing 6 counters. I don't know if
tmsemm@esoﬁuiemximmposs&ieorif‘mﬂmznlu&msm.

’

Ihavemtlookedyetataﬂxttxt _

2. Givena3x31atticéofmmta, it is possibie to draw four straight
lines without lifting your pencil, and pass through each point once and only
once. vmatisthemhﬁmnmmberoflimsnaedadtbpassthrmghau‘thepoiﬁu
inan3x3Mpeimtlattice?

I am still working an 2-D ceses. I can pass through all the points of a
¢ x 4 lattice using € lines. I don‘t know if this is the minimm mmber,
or if tnere is more than one wey to do this.
3. Two Weys to Cut a Pie if You Don't Care vhether all the Pieces Are
the Same Size and Shepe.
a) ﬁmmhm,mmmuammum,getmmstpiwea i

possilie. What is the maximum mmber of pieces possible with
10 cuts? | ¥

b) Jomnlpaizsofpomuntmq\.uneagootuuéie. ‘vhat
istmmmnmberofpimwiﬂxmpoW‘? o
I have found geametrical p‘ttemsthatmv.pa;ywdrm"mdve
éutsandhavealaodevelnpadagwalfomuhtotmao,a) and one that
) doesn't check forcaée b).

Q 281
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COMMENTS AND QUESTIONS ABOUT A PEG GAME®

(Called "Hrain Buster" ocummercially; also the same as Carolyn Chesson's
hexis and tails penny game.)

In this game the rules provide that a piecc can move ahoad eithexr by
mvkgcneslot.atbjjmpirgapiaadﬂxeopgooiuoolm. Jumping a
piece of the same color is not pexmitted.

Lat us try to imagine how a student might meke a record of the
develomments in the two red ~— two white peg geme:

A 8 c D
Mol &
2N & & XX
| 2 _ <
3 1
- » i) .
Coct
% N \J
1 - A

Specifically, this procedure of recording keeps a camplate record of how the
game progressed. (It ocould be remroduoed.) One could get studants to invent
sucn a schematic of keeping this record by asking them to explain on
paper, without words, in some diagram, how they did the two peg problem.
Mmmﬁmmsinﬂnﬁueapeg_m«elqo'lvpﬂdé&am{tadhgrm
for it. Actually, I don't know what the students would do; but I imaginn
scmpthing like this. It would be fun to see what they would do.

" JOTk; The game is called "Brain Buster” comercially amd is equivalent to a
heads and tails game suggested by Caralyn Chesson.

232
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anofﬂaﬂxmgstlatcmumtofmchmexpncitrmdnthahotal
mn&mofmvesmateachpiecamm Itim'tatallctwim

Plece ‘ md!bveeitmkes
ke 2
) B y 2
c 2 |
D ’ 2

- A nunber of tiings appear here. mmmmmmmmw
‘ mmmmtmfmmmmj?tuoftmuﬂnw
white piece, etc. In fact, all pieces move the same mmber of times.

Wnat Woula be the piede by piece breakiom for a thres - tires peg game?
lere are sumarized the results of scme fiddling around with the |
2, 3, 4, and 5 peg gamss, counting each piece.

‘2 2 3 4
2 3 3 . 3
2 3 4
2 3 3
2 3 4
e 2 3 ,
N 3 3 3 3
3 4
. 3 3 \ 4
\‘“’/ 4 d
. 3 B

“
! ]

boeqﬂustnlpyouq\msmatwmmppenfwlargarmﬂlmmnumof
pieces? Canymguessuntthehotalmm:erofmfarthnﬁred
red, and wihite piecés will be?

..




A couple of days ago in the topology session, -mmoblcrvdduntif'
you take a point out of the middle of a line segrent it%is divided into two
pieces. They then conjectured that this would happen with any figures made

~ out of lines and curves. At this point samecne else ¢bserved that you could
- remove one point fram a circle and the remainder would still be in one

_ plece. This leads to a whole series of fairly intriguing questions:

Question 11  Can you remove two pdints from a circle and leave the remainder
:l.nonepieba? |

Question. 2: anymdrawafigmxxaimhjouanrmmpohﬂzmﬂstm
leave the remainder in one plece?

guest:lm3z Canyoudrawaﬁg\zefmwhichymmmmcuymopoinu
’;»&:dsti%lleavaﬂnmairﬂetinmpiwa?

:Queetionh Doallfig\rea“&nthavatmsmty(ﬂntywmrm
exactly two points and leave the remainder in one plece) look alike? How

are they similar? How different can they be from one another?

Question Si. If you generalize the preceding three questicris to reoving
3,45, 6, ...pointl,vdntcanymaaw kylotaotmmnpluatthiastage’
Sitdammddrawavarietyoffmsandimestiqatev&nthmmmmyw
remvarimsgo:lntsfmttmeﬁgures For example, consider the following
figures. .~ In each case determine the maximum mumber of points that can be

removed, leaving the remainder in ome piece? 0

2345




¢

(A1l figures are linsar — they contain no points inside the lines)

Question 6:  What's going on here? Can you derive sme general criterion for
detenni:dmataglameﬂam:dmnmmbgofpointaﬂuténbemwvadfrm
- fioer R ,

A mmber of interesting related questions arise fram locking at the

"special® points where three or more lines coms together. Oonsider the following
two figures: | -

OO0

They are alike in that the maximmm muber of points you cen remve from either
one is three. Yt in the first figure it is impossihle to remwe either of
ueq»wialwintaaxﬂatﬂltaveammectedﬁgtme,mﬂainﬂnm
figureeitherspecialpointcanberamvedmﬂﬂnremltwﬂlstulhe
oonnechadsol&xgasymda;'tmvemythmgalae. Try lots of other
examples of this nature. For instance lock at the following figare:

A | 235




Ifyourmﬁvepbh&b,\hathﬂnmmdmnmmnotounpoinumichmn’bg
ramoved and still leave a contected figure?

Sare question for point B. |

Same question for point C.

what happens if you remove B and D? A and C?

'236‘
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A PROBLEM INVOLVING SEQUENCES AND LIMITS OF SEQUENCES

Consider ths
X y
1 1
.2 3
5 7
12 17
29 o a
70 99

mgmnral,eadxxmhﬂwmotﬂnm:arﬂyw;amwhue~n
eadiyvalmilthemofﬂ)eubpr;:ﬁimmlw;
mequestinnh,mut!nvalmottm;mitofrqti.ocy/x? My
friend wes certain he knew the answer (as you will be too if you calculate this
ratiofortlnfitst;envalmlofxarﬂkﬁ)\mtrnmldn'tmnit. Can you?
Some other questions of this scrt that misht be asked are:
1. Wmat wuld happen if ve had started off with values other than 1's for x and y?
2. unymmotmrseqm‘mqf.nk;ﬂﬂsmmml\nteuﬁ
associated limits? ) | ' o
3. mmmgmmmmé,mummmmumwféamﬁoof

237 .
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successive values of x'#? Of y's? “what is the value of the limit of the

ratio’of y to the next (instesd of the preceding)x?

G
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GAMES THAT EMPLOY MATHEMATICAL AMALYSTS

o

{. loffman's Game Number One :
A. Given sixteen squares in a row, plfyet- make alternate moves by
cancelling out two adjacent boxes - thase can bs anywhere as long
as those two have not alraady baen cancelled. The player that

cannot make a move loses. Thus

pteyer no. 1 |_IXIX
Preyer wo. 2 |_LKLK XIx
@ w1 XX x[x] TxTy
o, 2 AR AX IR INEX
{ w. 1 L 68 | I EXTRR] fwix] | Ixdx
w. 2 | )] T Dudx e ] Tl xdwlxlx
w. 1 L IXIKD IR R] TR Ix X[k ]#!

The first player wins, because the second player wvas unsble to
make & wove in the last diagram. Students are encouraged to
invent winning strategies for this game. This might mélndoc

do you went to go firet? .

‘ | . 23:}
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B. Variations of this geme that have been thought up s0 far’ include:

1.

2.

3.

You could change the mmber of squares from 16 to soms other
pwmbar: wuld 1¢ maks any differeuce wvhat that mmbar 1s?
If you could go first all tha tims, what lengths would you
prefer?

Instead of changing the length, one might allow the players
to cancel three adjacant squares? Or four?r Or 61109 for
that matter? VWhich of these uu\;nu is interesting?

vap vae copld srrangc a different stercing boards

X | :

X T Iwl XX
X X N \\L’ﬁ—
[ 1 T x "\ ,

In some of these it might ba usaful, and interesting, to allow not

1

nerely the cancellation of two squares adjacent and in ons row, but

perhaps two squares, ona sbove the other (as shown): or saybs even
two squares along s diagonal and still adjacent (as showm).

210
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/ II. Boffman's Game Wumber Two
’ The first player uses cthe mmbers: 1, 3, 5, 7, 9; while the swuuvwd
Q player uses: 2, 4, 6, 8. Ths players £ill in the tic-tac-toe board,
3 x 3, slteruately putting in their mumberss tha first playsr to
complete a row, column or diagonal with the sum 15, wing.

- b

1.

2.

3.

A.

N 1 . 1
e Iﬁl}f IRE

The second players wins. What is the wiming stritegy?! Do you want
to go first? Why? Why =~c?
Variations:

Could you arrange a different sst of mmbers? Would that
affact the vim:l.u strategy? What set of nine mmbers?
Wnuhkadﬂfcmﬂmiuur ¥hat sum? Would
thare always be & winming playexr? Why?! Why not?

Suppose we merely uﬁd that the first player bad to wse only
1's snd the sacond .piayer only 2's; lndﬂchcvdn player who
completed.an .0odd column, row, or diagonal wins. (Another
gama: you try to get an even column, row, or diagonal.)
Vhat would s four by four version of this game look 1ike?

241




I1I. Mr. 8implex Saves the Aspidistra (ses -bv!lo of the name)
Given a 3 by 3 square floor plan for a house, where all the

.  straight wvalls have doors in them as indicated, and where the two doors
Y to the cutside are i.nduat.cd. also, can yon find a path starting at the
front door going th:?cgh esach roem efu;y oace?
1 t 1 — | |
' + + . % Vow many different paths are there?
|

+ + -

=

> > .

.Doss this work on a A hy.f_ m._ sin{laxly _og.gtuctd: -

. T .1_) e Pacceds 4
- R :

- 4+ 4+ + -
- %
Suppose one of the rooms is closed ot!unno;ltm,.h-it pon;bhto
make a “tour” going through esch room otincr than that office, exactly

Office

once? DNoss it make a difference whers the office 1s?. Whare could it
be put? Whare could it oot be put?

Suppose the arrangement of rooms is chauged to a 5 by 37 A 4 by 32

A 6 by 47 Yor what combinations can a tour be made, vithout an.office?
Yor wvhat combinations can a tour be made with an office?

Suppose you are given a 5 by 3 arrangement: howmany distinctly different © .
tours are there starting at the frout door aad ending at the rear door?

24
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Suppose there were two floors, and there is a trap door comunscting every room
on the first floor to the ouns directly above it, along with the usual doors
thsmbothflwtd.Mm-Mpumtmnt drurdoc;uon
the first floor as befors, Is & tour possible? Do you need an office?

Just one? nmvuny m:-; if there are any?

Suppose there are more than two floors, with all the cotinecting doors? Then
what? Can you construct a eo-‘pliuud houss with many floors gnd nany

rooms on different floors, and ou}nt happens?
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IV. Wythoff’s Geme |

Start with two mmbers, or two piles of things, or two pilss of
anything. Players-move alternately. noves can be either (1) renoving
as many chips as the player wents from the first pile, or (2) removing
as many coips as he wants from the sscond pi.., or (3) r-oungcnoquﬁ.

mmber of chips from both piles. The player that cannot move, without
removing all chips, loses.

laro is how ona game pregressed:

s

13 S Y

m
. . : Cwinv)

¢ 13 ]2 |

Are there winning strategies: :

7

e T

| of

Varistions include, maturally, varying the two oumbers that begin
the game. Buppunthatmbcvmtthmm.mucobqu
; with; would you choose to go first or wait snd 80 second? On vwhat
basis?

F=

% : ., 24
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Othexr variations include:

)

o

2.

3

Eliminate vue third kind of move. Is the gama trivisl, thqn/?
Suppose you cen move, in the third move, an equal mmber of
chips from both piles, up to five chips, but no more?
Suppose you can move a fourth kind of move as well: remove
a8 nany chips as you wsnt from ons pile and that mmber

\
plus one more from the other pile. Then what heppsns to

- vy
the strategy?
Supposs you start with thres piles of chips, of some numbers,
and maks up some appropriate rules liks the ones we began with

for the aliowable move, thnn\vhnt consitutes a winning strategy?

2




V. A Problea Abocut Macklaces

.Suppose you have a factory that prcduces with tan beads ¢n
each necklace; how many different necklsces must you produce, using

beads of two colore, u@ou went to be able to satisfy any request?

sieYe)

ROTE: All three of the above ara the ssme, and you only have to
~._ yroduce one of them to satisfy any of the thres requests. The second can
\\‘ be obtained from the first by rotating the necklace twd budo in & zlock-
/// wise direction; the third can be obtained from tha ucgnd by £lipping the
° vhole necklace about an axis that is vertical through the middle of the
\ pecklace, turning it over. How many othsr srrangaments; that might sppear
to look different, can zeally be obtained Zrom the first q.ckhcc by some
#ort of motion ae described? Doas that help the plant manager of the -
factory to organise his factory.
Obvious variations:
1. Change the mmber of beads in the nacklace from ten to twenty.
or any mmber you want.
2. Suppose there are three different colors of besds to choose
frou, then what? What about four? What about just one color?
3. Suppose you ware producing besds where there waa a clsup, like
wost necklaces have, located betwsen two of the beads, and you

-

wexre askad to solve the origival probleam with this faatura?
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4. Suppou‘ the nacklace is really a "figure cight"- composed
of five beads in one loop and f£ive more beads 1n the second

loop and the loops were comcéedgﬁaa chown? . (in two eolor-)"

5. .Seme as four, except that the two loops axe not eonnoct'.d; -

when one buys & unecklace one gets a peckage with the five-
bead loops inside., Now what?
6._ Make up your own variations.
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